зависимость пути от времени при прямолинейном движении двух тел задана уравнениями s1=2/3t(в кубе)+t(в квадрате)-14 ; s2=2/3t(в кубе)-t(в квадрате)+11t-8. В какой момент времени их скорости будут равны?
2 C самого начала обратим внимание на то, что предложенную задачу можно выполнить как формул, так и логических рассуждений. B данном случае воспользуемся вторым вариантом.
Если сделать допущение, что нет никаких критериев выбора (все 8 учеников условно равны), то первого ученика мы будем выбирать из 8 школьников (т.e. есть 8 вариантов выбора). Соответственно, второго будем выбирать из 7, a третьего - из 6. Тогда всего ответ: всего Пары (n; m) и (m; n) это одна пара.
С (10; 2) = 10 / 2 8=45
4
Всего тетрадей 8+4 = 12 тетрадей всего в папке. Вероятность того, что вытащили линеечную тетрадь в первый раз равна 8/12 = 2/3. формула есть такая. вероятность равна частному требуемых исходов на всевозможные
во второй раз если выбирать то теперь выбирается из 11 тетрадей. и тетрадок в линейку уже не 8, а 7
вероятность будет 7/11
А общая вероятность того, что обе тетрадки в линию равна произведению вероятностей
(2/3)*(7/11) = 14/33 = приблизительно = 42%
5
Всего всевозможных исходов: 6+8+5=19 из них 8 благоприятные исходы.
В выражениях всегда сначала выполняется умножение и деление, затем сложение и вычитание. Если несколько чего-то, то по порядку от начала до конца. Если в выражении есть скобки, делаются сначала они, независимо от того, что в них - сложение, умножение и тд.
В первом сначала умножаем, потом складываем. 2*8=16, да +30 = 46
Во втором сначала делим, затем вычитаем. 24/6=4, 53-4=49
В третьем мы видим скобки, значит сразу выполняем их в первую очередь. 30+7=37, 80-37=43
Пошаговое объяснение:
2 C самого начала обратим внимание на то, что предложенную задачу можно выполнить как формул, так и логических рассуждений. B данном случае воспользуемся вторым вариантом.
Если сделать допущение, что нет никаких критериев выбора (все 8 учеников условно равны), то первого ученика мы будем выбирать из 8 школьников (т.e. есть 8 вариантов выбора). Соответственно, второго будем выбирать из 7, a третьего - из 6. Тогда всего ответ: всего Пары (n; m) и (m; n) это одна пара.
С (10; 2) = 10 / 2 8=45
4
Всего тетрадей 8+4 = 12 тетрадей всего в папке. Вероятность того, что вытащили линеечную тетрадь в первый раз равна 8/12 = 2/3. формула есть такая. вероятность равна частному требуемых исходов на всевозможные
во второй раз если выбирать то теперь выбирается из 11 тетрадей. и тетрадок в линейку уже не 8, а 7
вероятность будет 7/11
А общая вероятность того, что обе тетрадки в линию равна произведению вероятностей
(2/3)*(7/11) = 14/33 = приблизительно = 42%
5
Всего всевозможных исходов: 6+8+5=19 из них 8 благоприятные исходы.
m = 8
n = 19
Искомая вероятность: P = m/n = 8/19
В выражениях всегда сначала выполняется умножение и деление, затем сложение и вычитание. Если несколько чего-то, то по порядку от начала до конца. Если в выражении есть скобки, делаются сначала они, независимо от того, что в них - сложение, умножение и тд.
В первом сначала умножаем, потом складываем. 2*8=16, да +30 = 46
Во втором сначала делим, затем вычитаем. 24/6=4, 53-4=49
В третьем мы видим скобки, значит сразу выполняем их в первую очередь. 30+7=37, 80-37=43
В четвертом опять скобки. 21-15=6, 6/3=2