сумма 108
Пошаговое объяснение:
ас6 : n = 36, где n - натуральное число. Тогда
ас6 = 36n или
ас = 6n , т.е.
у нас двузначное число ас, которое должно без остатка делится на 6.
Рассмотрим следующие варианты:
n =1 ас = 6*1 = 6 - не подходит, т.к. число получилось однозначное
n = 2 ас = 6*2 = 12
n = 3 ас = 6*3 = 18
n = 4 ас = 6*4 = 24
n = 5 ас = 6*5 = 30
n = 6 ас = 6*6 = 36
n = 7 ас = 6*7 = 42
n = 8 ас = 6*8 = 48
n = 9 ас = 6*9 = 54
n = 10 ас = 6*10 = 60
n = 11 ас = 6*11 = 66
n = 12 ас = 6*12 = 72
n = 13 ас = 6*13 = 78
n = 14 ас = 6*14 = 84
n = 15 ас = 6*15 = 90
n = 16 ас = 6*16 = 96
n = 17 ас = 6*17 = 102 - это число уже не подходит, т.к. оно 3-х значное.
Поэтому наименьшее число = 12, наибольшее = 96. Их сумма:
12 +96 =108
если x > 0, то x + 1/x> 2.
1.2. а) Докажите, что x(1 − x) 6 1/4. б) Докажите, что
x(a − x) 6 a
2/4.
1.3. Докажите, что для чисел a, b, c, заключённых между 0 и 1, не могут одновременно выполняться неравенства
a(1 − b) > 1/4, b(1 − c) > 1/4 и c(1 − a) > 1/4.
1.4. При каком x функция f(x) = (x − a1)
2 + . . .+ (x − an)
2
принимает наименьшее значение?
1.5. Пусть x, y, z — положительные числа, сумма которых равна 1. Докажите, что 1/x + 1/y + 1/z > 9.
1.6. Докажите, что расстояние от точки (x0, y0) до прямой ax + by + c = 0 равно |ax0 + by0 + c|
p
a
2 + b
.
1.7. Пусть a1, . . ., an — неотрицательные числа, причём
a1 + . . . + an = a. Докажите, что
a1a2 + a2a3 + . . . + an−1an 6 a
сумма 108
Пошаговое объяснение:
ас6 : n = 36, где n - натуральное число. Тогда
ас6 = 36n или
ас = 6n , т.е.
у нас двузначное число ас, которое должно без остатка делится на 6.
Рассмотрим следующие варианты:
n =1 ас = 6*1 = 6 - не подходит, т.к. число получилось однозначное
n = 2 ас = 6*2 = 12
n = 3 ас = 6*3 = 18
n = 4 ас = 6*4 = 24
n = 5 ас = 6*5 = 30
n = 6 ас = 6*6 = 36
n = 7 ас = 6*7 = 42
n = 8 ас = 6*8 = 48
n = 9 ас = 6*9 = 54
n = 10 ас = 6*10 = 60
n = 11 ас = 6*11 = 66
n = 12 ас = 6*12 = 72
n = 13 ас = 6*13 = 78
n = 14 ас = 6*14 = 84
n = 15 ас = 6*15 = 90
n = 16 ас = 6*16 = 96
n = 17 ас = 6*17 = 102 - это число уже не подходит, т.к. оно 3-х значное.
Поэтому наименьшее число = 12, наибольшее = 96. Их сумма:
12 +96 =108
если x > 0, то x + 1/x> 2.
1.2. а) Докажите, что x(1 − x) 6 1/4. б) Докажите, что
x(a − x) 6 a
2/4.
1.3. Докажите, что для чисел a, b, c, заключённых между 0 и 1, не могут одновременно выполняться неравенства
a(1 − b) > 1/4, b(1 − c) > 1/4 и c(1 − a) > 1/4.
1.4. При каком x функция f(x) = (x − a1)
2 + . . .+ (x − an)
2
принимает наименьшее значение?
1.5. Пусть x, y, z — положительные числа, сумма которых равна 1. Докажите, что 1/x + 1/y + 1/z > 9.
1.6. Докажите, что расстояние от точки (x0, y0) до прямой ax + by + c = 0 равно |ax0 + by0 + c|
p
a
2 + b
2
.
1.7. Пусть a1, . . ., an — неотрицательные числа, причём
a1 + . . . + an = a. Докажите, что
a1a2 + a2a3 + . . . + an−1an 6 a
2/4.
Пошаговое объяснение: