Билет №1 Теоретическая часть. 1. Вопрос: Какая функция является линейной? ответ: Линейной является функция вида: f=kx+b. 2. Вопрос: Как умножить степени с одинаковыми основаниями? ответ: При умножения степеней с одинаковыми основаниями степени складываются, а основа остается прежней. Билет №2: Теоретическая часть. 1. Вопрос: Что является графиком линейной функции? Как можно построить такой график? ответ: Графиком линейной функции является ПРЯМАЯ. Что бы построить график линейной функции можно подставить поочередно два любых значения аргумента и вычислить значение функции (получить координаты двух точек) , после чего отметить эти точки на координатной плоскости и соединить их прямой. 2. Вопрос: Как разделить степени с одинаковыми основаниями? ответ: Чтобы разделить степени с одинаковыми основаниями нужно вычесть степени, а основание оставить прежним. Билет №3 Теоретическая часть. 1. Вопрос: Как найти точки пересечения графика линейной функции с осями координат: ответ: Чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции). Чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).
Примеры.
1) Найти точки пересечения графика линейной функции y=kx+b с осями координат.
Решение:
В точке пересечения графика функции с осью Ox y=0:
kx+b=0, => x= -b/k. Таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0). В точке пересечения с осью Oy x=0:
y=k∙0+b=b. Отсюда, точка пересечения графика линейной функции с осью ординат — (0; b). 2. Вопрос: Как возвести степень в степень? ответ: Чтобы возвести степень в степень нужно перемножить степени. Например:
P. s: Решать практическую часть не буду, т.к могу ошибиться...
1. велосипед со скоростью 24 км/ч за 5 ч проехал определенное расстояние. найдите это расстояние. Решение : S = v × t S = 24 * 5 = 120 (км) ответ : S= 120 км
2. Автобус с пассажирами доехал до конечной остановки за определенное время. сколько часов потратил автобус, если известно , что ехал он со скоростью 60 км/ч , а расстояние которое он проехал 120 км? Решение : S=v*t t=S:v t= 120: 60 = 2 (ч) ответ: t = 2 ч. 3. От города до села 180 км. доехать можно за 5 ч. Какова будет скорость транспорта ? S= v*t v= S:t v= 180:5= 36 (км/ч) ответ : v = 36 км/ч
Теоретическая часть.
1. Вопрос: Какая функция является линейной?
ответ: Линейной является функция вида: f=kx+b.
2. Вопрос: Как умножить степени с одинаковыми основаниями?
ответ: При умножения степеней с одинаковыми основаниями степени складываются, а основа остается прежней.
Билет №2:
Теоретическая часть.
1. Вопрос: Что является графиком линейной функции? Как можно построить такой график?
ответ: Графиком линейной функции является ПРЯМАЯ. Что бы построить график линейной функции можно подставить поочередно два любых значения аргумента и вычислить значение функции (получить координаты двух точек) , после чего отметить эти точки на координатной плоскости и соединить их прямой.
2. Вопрос: Как разделить степени с одинаковыми основаниями?
ответ: Чтобы разделить степени с одинаковыми основаниями нужно вычесть степени, а основание оставить прежним.
Билет №3
Теоретическая часть.
1. Вопрос: Как найти точки пересечения графика линейной функции с осями координат:
ответ: Чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции).
Чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).
Примеры.
1) Найти точки пересечения графика линейной функции y=kx+b с осями координат.
Решение:
В точке пересечения графика функции с осью Ox y=0:
kx+b=0, => x= -b/k. Таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0).
В точке пересечения с осью Oy x=0:
y=k∙0+b=b. Отсюда, точка пересечения графика линейной функции с осью ординат — (0; b).
2. Вопрос: Как возвести степень в степень?
ответ: Чтобы возвести степень в степень нужно перемножить степени. Например:
P. s: Решать практическую часть не буду, т.к могу ошибиться...
Решение :
S = v × t
S = 24 * 5 = 120 (км)
ответ : S= 120 км
2.
Автобус с пассажирами доехал до конечной остановки за определенное время. сколько часов потратил автобус, если известно , что ехал он со скоростью 60 км/ч , а расстояние которое он проехал 120 км?
Решение :
S=v*t
t=S:v
t= 120: 60 = 2 (ч)
ответ: t = 2 ч.
3. От города до села 180 км. доехать можно за 5 ч. Какова будет скорость транспорта ? S= v*t v= S:t v= 180:5= 36 (км/ч) ответ : v = 36 км/ч