Данную задачу следует решать через х (икс). Для начала вспомним правила нахождения части от целого: чтобы найти часть от целого, нужно дробь, соответствующую этой части, умножить на целое. А теперь запишем решение: 1. Пусть х=кол-ву всех вещей, тогда (по правилу, указанному выше) кол-во тетрадей=две пятнадцатых икс (2/15 х), кол-во книг=восемь пятнадцатых икс (8/15 х). *Следует учесть, что икс (х) относится ко всей дроби, а не только к знаменателю*. Из данных рассуждений составим уравнение: х - 2/15 х - 8/15 х=15 Пояснение: из общего кол-во вещей вычитаем кол-во тетрадей и книг, соответственно, остаются только альбомы, чье кол-во нам известно из условия - 15 штук. Решаем уравнение: Перед икс всегда стоит 1, применительно к этому уравнению, 1 можно представить как 15/15 (15/15=1). Запишем левую часть уравнения на одной дробной черте, а правую просто перепишем: *не забываем про х* 15-2-8 / 15 х =15 Выполним вычитание в числителе дроби, переписав остальное, и получим: *не забываем про х* 5/15 х =15 Чтобы найти х, нужно 15 разделить на 5/15. По правилу деления дробей, 15 умножаем на 15, и полученное выражение делим на пять. В итоге получается 45. Следовательно, х=45. Помним, что х - общее кол-во вещей. Теперь пролистаем чуть выше и найдем выражения: кол-во тетрадей=две пятнадцатых икс (2/15 х), кол-во книг=восемь пятнадцатых икс (8/15 х). Получаем, 2/15 * 45=6 (кол-во тетрадей); 8/15 * 45=24 (кол-во книг). ответ: всего - 45 вещей; тетрадей - 6 штук; книг - 24 штуки
1. Приведите пример пятизначного числа кратного 12, произведение цифр которого равно 40. В ответе укажите два таких числа.
2. Найдите трехзначное натуральное число, большее 600, которое при делении на 4, на 5 и на 6 дает в остатке 3, и цифры которого расположены в порядке убывания слева направо. В ответе укажите хотя бы одно такое число.
3. Найдите четырёхзначное число, кратное 88, все цифры которого различны и чётны. В ответе укажите два возможных варианта этих чисел.
4. Найдите четырёхзначное число, большее 1500, но меньшее 2000, которое делится на 24 и сумма цифр которого равна 21. В ответе укажите все возможные числа.
5*. На складе имеются ножи и вилки. Общее число тех и других больше 300, но меньше 400. Если ножи и вилки вместе считать десятками или дюжинами, то в обоих случаях получается целое число десятков и целое число дюжин. Сколько было ножей и вилок на складе, если ножей было на 160 меньше, чем вилок?
Для начала вспомним правила нахождения части от целого: чтобы найти часть от целого, нужно дробь, соответствующую этой части, умножить на целое.
А теперь запишем решение:
1. Пусть х=кол-ву всех вещей, тогда (по правилу, указанному выше) кол-во тетрадей=две пятнадцатых икс (2/15 х), кол-во книг=восемь пятнадцатых икс (8/15 х). *Следует учесть, что икс (х) относится ко всей дроби, а не только к знаменателю*.
Из данных рассуждений составим уравнение:
х - 2/15 х - 8/15 х=15
Пояснение: из общего кол-во вещей вычитаем кол-во тетрадей и книг, соответственно, остаются только альбомы, чье кол-во нам известно из условия - 15 штук.
Решаем уравнение:
Перед икс всегда стоит 1, применительно к этому уравнению, 1 можно представить как 15/15 (15/15=1).
Запишем левую часть уравнения на одной дробной черте, а правую просто перепишем: *не забываем про х*
15-2-8 / 15 х =15
Выполним вычитание в числителе дроби, переписав остальное, и получим: *не забываем про х*
5/15 х =15
Чтобы найти х, нужно 15 разделить на 5/15.
По правилу деления дробей, 15 умножаем на 15, и полученное выражение делим на пять. В итоге получается 45.
Следовательно, х=45.
Помним, что х - общее кол-во вещей. Теперь пролистаем чуть выше и найдем выражения:
кол-во тетрадей=две пятнадцатых икс (2/15 х), кол-во книг=восемь пятнадцатых икс (8/15 х).
Получаем, 2/15 * 45=6 (кол-во тетрадей); 8/15 * 45=24 (кол-во книг).
ответ: всего - 45 вещей; тетрадей - 6 штук; книг - 24 штуки
1. Приведите пример пятизначного числа кратного 12, произведение цифр которого равно 40. В ответе укажите два таких числа.
2. Найдите трехзначное натуральное число, большее 600, которое при делении на 4, на 5 и на 6 дает в остатке 3, и цифры которого расположены в порядке убывания слева направо. В ответе укажите хотя бы одно такое число.
3. Найдите четырёхзначное число, кратное 88, все цифры которого различны и чётны. В ответе укажите два возможных варианта этих чисел.
4. Найдите четырёхзначное число, большее 1500, но меньшее 2000, которое делится на 24 и сумма цифр которого равна 21. В ответе укажите все возможные числа.
5*. На складе имеются ножи и вилки. Общее число тех и других больше 300, но меньше 400. Если ножи и вилки вместе считать десятками или дюжинами, то в обоих случаях получается целое число десятков и целое число дюжин. Сколько было ножей и вилок на складе, если ножей было на 160 меньше, чем вилок?