Решение: Обозначим скорость вытекания второй трубы за (х)л/мин, тогда скорость вытекания первой трубы, согласно условия задачи, равна: (х-1)л/мин Первая труба наполняет бассейн за время: 110/(х-1) мин Вторая труба наполняет бассейн за время: 99/х мин А так как первая труба заполняет бассейн на 2 мин дольше чем вторая составим уравнение: 110/(х-1)-99/х=2 х*110-(х-1)*99=(х)*(х-1)*2 110х-99х+99=2x^2-2x 2x^2-2x-110x+99x-99=0 2x^2-13x-99=0 x1,2=(13+-D)/2*2 D=√(169-4*2*-99)=√(169+792)=√961=31 x1,2=(13+-31)/4 x1=(13+31)/4 x1=44/4 x1=11 (л/мин) - скорость вытекания трубы второй трубы x2=(13-31)/4 x2=-18/4 x2=-4,5 не соответствует условию задачи Отсюда: скорость вытекания первой трубы: (х-1) или: 11-1=10 л/мин
первое число - а
второе число - в
известно что сумма этих чисел равна 2, то есть а+в = 2,
а разность равно 1,46, тогда а-в = 1,46.
составим систему уравнений:
а+в=2
а-в=1,46.
Из первого урав. выразим "а". получается а=2-в.
Во второе уравнение подставляем значение "а" и получаем (2-в)-в=1,46.
решаем.
2-в-в=1,46
2-2в=1,46
-2в=1,46-2
-2в=-0,54
в=0,27.
решаем первое уравнение подставляя "в".
а=2-в
а=2-0,27
а=1,73.
ответ: числа 0,27 и 1,73
Обозначим скорость вытекания второй трубы за (х)л/мин, тогда скорость вытекания первой трубы, согласно условия задачи, равна: (х-1)л/мин
Первая труба наполняет бассейн за время:
110/(х-1) мин
Вторая труба наполняет бассейн за время:
99/х мин
А так как первая труба заполняет бассейн на 2 мин дольше чем вторая составим уравнение:
110/(х-1)-99/х=2
х*110-(х-1)*99=(х)*(х-1)*2
110х-99х+99=2x^2-2x
2x^2-2x-110x+99x-99=0
2x^2-13x-99=0
x1,2=(13+-D)/2*2
D=√(169-4*2*-99)=√(169+792)=√961=31
x1,2=(13+-31)/4
x1=(13+31)/4
x1=44/4
x1=11 (л/мин) - скорость вытекания трубы второй трубы
x2=(13-31)/4
x2=-18/4
x2=-4,5 не соответствует условию задачи
Отсюда:
скорость вытекания первой трубы: (х-1) или: 11-1=10 л/мин
ответ: Скорость вытекания первой трубы 10л/мин