В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
burtsevadianka
burtsevadianka
07.04.2022 19:06 •  Математика

Здравствуйте с решением. Исследовать значение на экстремум функцию у= - х^3+6x^2-3

Показать ответ
Ответ:
НМИ2003
НМИ2003
15.10.2020 13:28

ответ: Максимум - (4;29), Минимум - (0;-3)

Пошаговое объяснение:

(Как я понимаю, ночью ставки выше)

Возьмем производную данной функции, чтобы затем найти экстремум:

f'(x) = (-x^3)' + (6x^2)' +(-3)' = -3x^2 + 12x + 0 = -3x^2 + 12x

f'(x) = -3x^2 + 12x

Известно, что производная принимает нулевое значение в точке экстремума ⇒ приравняв производную к нулю мы сможем его найти.

f'(x) = 0\\-3x^2 +12x = 0\\-3x(x-4) = 0\\x = 0; 4

Рассмотрим знак производной до x = 0. При x = -1 производная отрицательна ⇒ функция убывает и при x = 0 минимум (можем так говорить, так как функция обычный куб). Затем производная становиться положительной и функция возрастает, пока x не становиться равен 4. Здесь достигается максимум. Потом производная становиться вновь отрицательной.

Значит:

При x = 0 - min

При x = 4 - max

Подставим числа:

(0;-3) - min\\(4; 29) - max

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота