Подобные члены. Это члены с переменной одного порядка, члены с одинаковыми переменными или свободные члены (члены, не содержащие переменную). Другими словами, подобные члены включают одну переменную в одной и той же степени, включают несколько одинаковых переменных или не включают переменную вовсе. Порядок членов в выражении не имеет значения.Например, 3x2 и 4x2 - это подобные члены, так как они содержат переменную «х» второго порядка (во второй степени). Однако х и x2 не являются подобными членами, так как содержат переменную «х» разных порядков (первого и второго). Точно так же -3yx и 5хz не являются подобными членами, так как содержат разные переменные.Упрощение алгебраических выражений является одним из ключевых моментов изучения алгебры и чрезвычайно полезным навыком для всех математиков. Упрощение позволяет привести сложное или длинное выражение к простому выражению, с которым легко работать. Базовые навыки упрощения хорошо даются даже тем, кто не в восторге от математики. Соблюдая несколько простых правил, можно упростить многие из наиболее распространенных типов алгебраических выражений без каких-либо специальных математических знаний.
Разложение на множители. Это нахождение таких чисел, произведение которых приводит к исходному числу. Любое исходное число может иметь несколько множителей. Например, число 12 может быть разложено на следующий ряд множителей: 1 × 12, 2 × 6 и 3 × 4, поэтому можно сказать, что числа 1, 2, 3, 4, 6 и 12 являются множителями числа 12. Множители совпадают с делителями, то есть числами, на которые делится исходное число.Например, если вы хотите разложить на множители число 20, запишите это так: 4 × 5.Обратите внимание, что при разложении на множители переменная учитывается. Например, 20x = 4(5x).Простые числа не могут быть разложены на множители, потому что они делятся только на себя и на 1.Запомните и соблюдайте порядок выполнения операций во избежание ошибок.
Разложение на множители. Это нахождение таких чисел, произведение которых приводит к исходному числу. Любое исходное число может иметь несколько множителей. Например, число 12 может быть разложено на следующий ряд множителей: 1 × 12, 2 × 6 и 3 × 4, поэтому можно сказать, что числа 1, 2, 3, 4, 6 и 12 являются множителями числа 12. Множители совпадают с делителями, то есть числами, на которые делится исходное число.Например, если вы хотите разложить на множители число 20, запишите это так: 4 × 5.Обратите внимание, что при разложении на множители переменная учитывается. Например, 20x = 4(5x).Простые числа не могут быть разложены на множители, потому что они делятся только на себя и на 1.Запомните и соблюдайте порядок выполнения операций во избежание ошибок.
Пояснение:
Порядок действий при вычислениях:
• (1*) - Возведение числа в степень;
• (2) - Вычисления в скобках (или раскрытие скобок);
• (3) - Умножение / деление (соблюдая порядок слева на право);
• (4) - Сложение / вычитание (соблюдая порядок слева на право).
Решение (1):
Из пояснения следует, что последним действием в выражении
(38 + 0 ÷ 1) × 18 - 78
нужно выполнить вычитание.
Решение (2):
(38 + 0 ÷ 1) × 18 - 78 = ?
² ¹ ³ ⁴
1) 0 ÷ 1 = 0;
2) 38 + 0 = 38;
3) 38 × 18 = 684;
4) 684 - 78 = 606.
ответ: 1) последним нужно выполнять действие вычитание (4); 2) 606.
Удачи Вам! :)