В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
equillirum
equillirum
22.06.2021 23:55 •  Математика

Желательно с таблицей. лодка двигалась 66 км. по озеру и 50 км. по течению реки. на путь по озеру она затратила на 1 ч. больше. определите скорость лодки при движении по озеру, если известно, что скорость течения реки равна 3 км/ч.

Показать ответ
Ответ:
238064356
238064356
19.05.2022 10:25

Оценка:

Докажем, что оставшееся на доске число будет нечётным. Посмотрим, как изменяется сумма всех чисел от производимой операции. Пусть сумма чисел до операции равна S, а операция проводится над числами a и b и a ≥ b. Тогда S' = S - a + (a - b) - b = S - 2b. Так как операции нахождения разности проводились над целыми числами, результат будет целым, значит, 2b - чётное число. Изначально сумма всех чисел была равна 2015 * 1007 (нечётное число), значит, после каждой операции она будет оставаться нечётной, откуда последнее оставшееся число будет нечётным. Так как a ≥ b, и a и b - неотрицательные числа, то их разность тоже будет неотрицательна. Значит, число, оставшееся на доске, не будет больше самого большого из изначальных чисел. Тогда наибольшее число, которое могло остаться на доске, равно 2013.

Пример:

Рассмотрим числа k, k+1, k+2, k+3 и k+4. Сперва проведём операцию над числами k+3 и k+4 (получим 1), потом над 1 и k+2 (получим k+1), затем над k+1 и k+1 (получим 0), и, наконец, над k и 0 (получим k). Таким образом мы убираем 4 подряд стоящих числа. Уберём 2012 чисел от 2 до 2013 включительно. Теперь проведём операцию над числами 1 и 2014, получим 2013.

ответ: 2013.

0,0(0 оценок)
Ответ:
natapova12
natapova12
06.03.2021 15:59

Находим частные производные:

z=2x^3+2y^3-36xy+430 \\ \\ z'_x=6x^2-36y \\ z'_y=6y^2-36x

Приравниваем их к нулю и решаем систему:

\left\{\begin{matrix} 6x^2-36y=0\ \ |:6 \\ 6y^2-36x=0 \ \ |:6 \end{matrix}\right. \\ \\ \left\{\begin{matrix} x^2-6y=0\ \ \\ y^2-6x=0 \ \ \end{matrix}\right.\\ \\ \left\{\begin{matrix} y=\frac{x^2}{6} \ \\ y^2-6x=0 \ \ \end{matrix}\right. \\ \\ \\ (\frac{x^2}{6})^2-6x=0\\ \\ \frac{x^4}{36} -6x=0 \ \ |*36 \\ \\ x^4-216x=0 \\ \\ x(x^3-216)=0 \\ \\

\begin{bmatrix} x_1=0\\ x_2^3-216=0 \end{matrix} \ \ \Leftrightarrow \ \ \begin{bmatrix} x_1=0\\ x_2^3=216 \end{matrix} \ \Leftrightarrow \ \ \begin{bmatrix} x_1=0\\ x_2=6\end{matrix} \\ \\ y=\frac{x^2}{6}\\ \\ \begin{bmatrix} y_1=\frac{0^2}{6} \\ \\ y_2= \frac{6^2}{6} \end{matrix} \ \ \Leftrightarrow \begin{bmatrix}y_1=0\\ y_2=6 \end{matrix}

Получаем две ВОЗМОЖНЫЕ (критические или стационарные) точки экстремума: M₁(x₁;y₁) и М₂(х₂;у₂)

в данном случае: M₁(0;0) и M₂(6;6)

1) Проверим точку M₁

для этого находим вторые частные производные функции и подставляем координаты нашей точки:

A=z''_{xx}=12x; \ \ z''_{xx}(0;0)=0 \\ \\ B=z''_{xy}=z''_{yx}=-36; \\ \\ C=z''_{yy}=12y; \ z''_{yy}(0;0)=0

AC-B²=0*0-(-36)²=-36<0 - следовательно экстремума в точке М₁ нет

2) Проверим точку М₂

A=z''_{xx}=12x; \ \ z''_{xx}(6;6)=72 \\ \\ B=z''_{xy}=z''_{yx}=-36; \\ \\ C=z''_{yy}=12y; \ z''_{yy}(6;6)=72

AC-B²=72*72-(-36)²=3888>0 экстремум есть, причем минимум (так как A>0)

Итак, точка минимума М₂(6;6)

Минимум:

z(M_2)=2*6^3+2*6^3-36*6*6+430=-2

ответ: z=-2 - минимум функции


P.S.

Если AC-B²> 0 и A > 0, то М - точка минимума

Если AC-B²> 0 и A < 0, то М - точка максимума

Если AC-B²< 0, то экстремумов нет

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота