Женя и Саша играют в игру «крестики-крестики». Игра заключается в том, что Женя и Саша по очереди ставят крестики на доску 21×21, при этом нельзя ставить 7 крестиков подряд по вертикали или по горизонтали (по диагонали можно). Какое наибольшее количество крестиков Женя и Саша могут поставить на доску? ответ:
крестик(-а, -ов
1. а) -2,16 меньше чем 2,1; б) -5 целых 7/11 больше -5 целых 8/11; в) -7,5 меньше 0;
г) -1,19 больше - 1,3; д) - 14,78 меньше 1,478; е) модуль числа -3 целых 3/7 больше 3и2/7
2. 3; 1,95; -6,1; -6 целых 2/7; -38,9; -40; -46 целых 2/9; -58,1
3. а) -66; б) 3,2; в)-16; г) -17,81; д) -19,55 (обрати внимание, некорректное выражение)
е) -8,45
4. пусть х - искомое число, тогда
0,14х - 26 + 3,2 = -17,2
х = 40
5. пусть х - ширина, длина (х + 8), тогда отношение ширины к длине равно:
х/(х+8) = 2/3
х = 16 - это ширина; 16 + 8 = 24 - это длина
Пошаговое объяснение:а) Прямые АВ и А₁С₁ - скрещивающиеся, а расстоянием между скрещивающимися прямыми называют расстояние от некоторой точки скрещивающихся прямых (например точки А) к плоскости, проходящей через другую прямую плоскость треугольника АВС), параллельную первой прямой (АС), т.е это есть расстояние между АС и А₁₁С₁.. Оно равно боковому ребру АА₁, ч.т.д. б) 1) Обозначим угол между плоскостями АВС и АКС буквой α =45°. Построим угол α: проведём ВЕ⊥АС и КЕ⊥АС, тогда α= 45°. 2) Так как ВК : В₁К=2 : 3, то ВК=2х, В₁К=3х. 3) Рассмотрим ΔВЕК прямоугольный, т.к. =45°, то он равнобедренный,⇒ВК= ВЕ= 2х , ⇒ЕК²= (2х)²+(2х)²= 8х². 4) ΔАВС по условию равнобедренный, ⇒ АЕ=ЕС= АС/2 = 4√2 : 2= 2√2.Из ΔСЕК -прямоугольного ЕК²= КС² -ЕС² = 8² - (2√2)²= 64 - 8 = 56. 5) Но ЕК²= 8х², ⇒8х² =56, ⇒ х² = 56 :8 = 7, х=√7 6)Тогда искомое расстояние между прямыми АВ и А₁С₁: ВВ₁ =2х+3х=5х= 5·√7 Отв: ВВ₁ =5√7