Боковая сторона равносторонняя трапеции 10√2 см. Она образует с основанием куд 45 градусов. Найти площадь трапеции, если в нее можно вписать окружность.
Пошаговое объяснение:
Прочитаем задачи:
Боковая сторона равнобедренной трапеции равна десять корней из двух, и образует с основанием угол 45 градусов.Найти площадь трапеции если в нее можно вписать окружность.
Опустим ВК⊥АD, ∠А = ∠АВК = 45 ° ⇒ВК = АК
АВ² = 2ВК²⇒ВК = √АВ² / 2 = 10.
В четырехугольник можно вписать окружность тогда, когда суммы противоположных сторон четырехугольника равни.⇒
А) 2; 2 3/14; 9 5/9; 1 5/53; 1 6/7; 1 7/38;
1 7/12; 6 7/9; 13; 2 5/16; 1 4/31; 7; 2;
3 7/22; 1 8/27.
Б) 2 8/33; 1 7/12; 4; 7 8/9; 1 11/48; 11;
8 5/8; 2 6/19; 1 7/40; 1 5/17; 1 5/32;
1 7/116; 7; 3 8/15; 3 6/7.
Пошаговое объяснение:
Делим числитель на знаменатель, выделяем целую часть, остаток записываем в числитель, знаменатель остается тот же.
А) 22/11=2; 31/14=2 3/14; 86/9=9 5/9;
58/53=1 5/53; 13/7=1 6/7; 45/38=1 7/38;
19/12=1 7/12; 61/9=6 7/9; 39/3=13; 37/16=2 5/16; 35/31=1 4/31; 49/7=7;
12/6=2; 73/22=3 7/22; 35/27=1 8/27;
Б) 74/33=2 8/33; 19/12=1 7/12; 8/2=4;
71/9=7 8/9; 59/48=1 11/48; 33/3=11;
69/8=8 5/8; 44/19=2 6/19; 47/40=1 7/40;
22/17=1 5/17; 37/32=1 5/32;
123/116=1 7/116; 63/9=7; 53/15=3 8/15;
27/7=3 6/7
Боковая сторона равносторонняя трапеции 10√2 см. Она образует с основанием куд 45 градусов. Найти площадь трапеции, если в нее можно вписать окружность.
Пошаговое объяснение:
Прочитаем задачи:
Боковая сторона равнобедренной трапеции равна десять корней из двух, и образует с основанием угол 45 градусов.Найти площадь трапеции если в нее можно вписать окружность.
Опустим ВК⊥АD, ∠А = ∠АВК = 45 ° ⇒ВК = АК
АВ² = 2ВК²⇒ВК = √АВ² / 2 = 10.
В четырехугольник можно вписать окружность тогда, когда суммы противоположных сторон четырехугольника равни.⇒
АВ + CD = BC + AD = 2 * 10√2 = 20√2
S = BK * (BC + AD) / 2 = 10 * (20√2) / 2 = 100√2.