Биномиальным называют распределение количества «успехов» в последовательности из n независимых случайных экспериментов, таких, что вероятность «успеха» в каждом из них постоянна и равна p.
Иначе говоря, пусть происходит n независимых испытаний, в каждом из которых событие может появится с одной и той же вероятностью p. Тогда случайная величина X - количество испытаний, в которых появилось событие, имеет биномиальное распределение вероятностей.
Она может принимать целые значения от 0 (событие не произошло ни разу) до n (событие произошло во всех испытаниях). Формула для вычисления соответствующих вероятностей - уже известная нам формула Бернулли для схемы повторных независимых испытаний:
P(X=k)=Ckn⋅pk⋅(1−p)n−k,k=0,1,2,...,n.
Для биномиального распределения известны готовые формулы для математического ожидания и дисперсии:
Вот наступила золотая осень. Самая красивая и живописная пора года. Осеньлюбит желтые, красные, оранжевые краски, а как любит она осыпать все золотом. Вот приходишь в березовую рощу, и не можешь отвести глаз, все в золоте. На березках вместо листочков висят золотые монетки, и, кажется, что от одного дуновения ветерка они начнут тут же звенеть. Золотом осыпает осень и парки, особенно липы. Идешь и радуешься такой красоте. И начинаешь понимать, почему поэты так любили воспевать осень. А иногда просто слов нет, ну невозможно описать все ту красоту, которая открывается перед тобой.
Биномиальным называют распределение количества «успехов» в последовательности из n независимых случайных экспериментов, таких, что вероятность «успеха» в каждом из них постоянна и равна p.
Иначе говоря, пусть происходит n независимых испытаний, в каждом из которых событие может появится с одной и той же вероятностью p. Тогда случайная величина X - количество испытаний, в которых появилось событие, имеет биномиальное распределение вероятностей.
Она может принимать целые значения от 0 (событие не произошло ни разу) до n (событие произошло во всех испытаниях). Формула для вычисления соответствующих вероятностей - уже известная нам формула Бернулли для схемы повторных независимых испытаний:
P(X=k)=Ckn⋅pk⋅(1−p)n−k,k=0,1,2,...,n.
Для биномиального распределения известны готовые формулы для математического ожидания и дисперсии:
M(X)=np,D(X)=npq,σ(X)=npq−−−√.
Пошаговое объяснение:
Золотом осыпает осень и парки, особенно липы. Идешь и радуешься такой красоте. И начинаешь понимать, почему поэты так любили воспевать осень. А иногда просто слов нет, ну невозможно описать все ту красоту, которая открывается перед тобой.