Знайдіть кути паралелограма,якщо: 1) один із його кутів дорівнює 46 градусів
2) сума двох його кутів дорівнює 186 градусів
3) один із його кутів більше на 56 градусів за другий
4) один із його кутів у 3 рази менший від другого
5) два його кути відносяться як 5:7
ответ:Когда множества A и B конечны и содержат небольшое число элементов, найти их декартово произведение несложно. А если множества бесконечны? В математике нашли выход из этой ситуации. Наглядное изображение декартова произведения двух числовых множеств можно получить при координатной плоскости. Прямоугольная система координат позволяет каждой точке плоскости поставить в соответствие единственную пару действительных чисел – координаты этой точки. Понятие координат точек на прямой и на плоскости было впервые введено в геометрию французским ученым и философом Рене Декартом в XVII веке. Это событие явилось началом новой эры в математике – эры рождения и развития понятий функции и геометрического преобразования. По имени Рене Декарта прямоугольные координаты на плоскости называют еще декартовыми.
Но как связано с именем Декарта, жившего в XVII веке, понятие декартова произведения множеств, введенное в математику в конце XIXвека? Чтобы ответить на этот во выясним сначала, как используют прямоугольную систему координат для наглядного представления декартова произведения двух числовых множеств.
Пусть А и В – числовые множества. Тогда элементами декартова произведения этих множеств будут упорядоченные пары чисел. Изобразив каждую пару чисел точкой на координатной плоскости, получим фигуру, которая и будет наглядно представлять декартово произведение множеств А и В.
Изобразим на координатной плоскости декартово произведение множеств А и В, если:
1) А = {1, 2, 3}, B = {3, 5};
2) A = {1, 2, 3}, B = [3, 5];
3) A = [1, 3], B = [3, 5];
4) A = R, B = [3, 5];
5) A = R, B = R.
В случае 1 данные множества конечны и содержат небольшое число элементов, поэтому можно перечислить все элементы их декартова произведения: А × В = {(1; 3), (1; 5), (2; 3), (2; 5), (3; 3), (3; 5)}.
Построим оси координат и на оси Ox отметим элементы множества А, а на оси - элементы множества В. Затем изобразим каждую пару чисел из множества А × В точкой на координатной плоскости. Полученная фигура из шести точек и будет наглядно представлять декартово произведение множеств А и В (рис. 1).
В случае 2 перечислить все элементы декартова произведения множеств невозможно, поскольку множество В бесконечное. Но можно представить процесс образования этого декартова произведения: в каждой паре первая компонента либо 1, либо 2, либо 3, а вторая компонента – действительное число из промежутка [3; 5]. Все пары, первая компонента которых есть число 1, а вторая пробегает значения от 3 до 5 включительно, изображаются точками первого отрезка. Аналогично строятся два других отрезка
Пошаговое объяснение: