Среди всех 3n учеников выберем такого ученика (точнее, одного из таких учеников), который имеет наибольшее число kk знакомых в одной из двух других школ. Пусть для определенности им оказался ученик А первой школы, который знает kk учеников, например, из второй школы. Тогда А знает n+1–kn+1–k учеников из третьей школы, причем n+1–k≥1n+1–k≥1, так как k≤nk≤n. Рассмотрим ученика В третьей школы, знакомого с А. Если В знает хотя бы одного ученика С из kk знакомых А во второй школе, то ученики A, В, С образуют искомую тройку. Если же В не знает никого из kk знакомых А во второй школе, то в этой школе он знаком не более чем с n–kn–k учениками, а значит, в первой школе он знаком не менее чем с n+1−(n−k)=k+1n+1−(n−k)=k+1 учениками, что противоречит выбору kk.
Пошаговое объяснение:
последовательность выглядит следующим образом
1,2,2,3,3,3,4,4,4,4, обозначим эту последовательность (1)
составим последовательность из количеств каждого натурального числа встречающегося в этой последовательности
то есть единиц -1, двоек-2, троек-3,...
1,2,3,4,5,6, обозначим эту последовательность (2)
заметим что сумма одного члена этой последовательности равна количеству единиц последовательности (1)
заметим что сумма двух членов этой последовательности равна количеству единиц и двоек последовательности (1)
и так далее
сумма n членов этой последовательности равна количеству чисел до n (включительно) последовательности (1)
найдем n когда сумма последовательности (2) ≈ 2016 (приближенно)
по формуле суммы арифметической прогресии
Sn=(2a₁+d(n-1))*n/2
a₁=1; d=1
Sn=(2a₁+d(n-1))*n/2=Sn=(2+n-1)*n/2=(n+1)n/2
Sn=2020
(n+1)n/2=2020
n²+n-4040=0 решим квадратное урвнение
d=1+4*4040=1661
√1661=приближенно 127
n=(-1+127)/2≈126/2=63 (рассматриваем только положительный корень)
Найдем точное значение S₆₃=(63+1)*63/2=2016
то есть с 1 по 2016-го места в последовательности (1) идут числа
от 1 до 63 а начиная с 64го места идут числа 64
S₆₄=(64+1)*64/2=2080
так как 2016<2020<2080
то на 2020 месте стоит число 64
Среди всех 3n учеников выберем такого ученика (точнее, одного из таких учеников), который имеет наибольшее число kk знакомых в одной из двух других школ. Пусть для определенности им оказался ученик А первой школы, который знает kk учеников, например, из второй школы. Тогда А знает n+1–kn+1–k учеников из третьей школы, причем n+1–k≥1n+1–k≥1, так как k≤nk≤n. Рассмотрим ученика В третьей школы, знакомого с А. Если В знает хотя бы одного ученика С из kk знакомых А во второй школе, то ученики A, В, С образуют искомую тройку. Если же В не знает никого из kk знакомых А во второй школе, то в этой школе он знаком не более чем с n–kn–k учениками, а значит, в первой школе он знаком не менее чем с n+1−(n−k)=k+1n+1−(n−k)=k+1 учениками, что противоречит выбору kk.