1) Выберем: Х это книги на первой полке; Х*35% или Х*35/100= Х*7/20 это книги на второй полке; Х*7/20*5/7 =Х*5/20 это книги на третьей полке ; составим уравнение х+х*7/20+х*5/20=320 х*20/20+х*7/20+х*5/20=320 х*32/20=320 х*8/5=320 х=320:8/5 х=320*5:8 х=200( книг на первой полке) 2) 200 *35:100=70 (книг на второй полке) 3) 70*5/7=350:7=50( книг на третьей полке).
На циферблате имеется 60 делений, на которые приходится 360 градусов. Значит, когда стрелка пройдёт 1 деление, то она переместиться на 360:60=6 градусов. Минутная стрелка за 15 мин пройдёт 6*15=90 градусов. Определим, сколько делений пройдёт часовая стрелка за то время, пока мин. стрелка проходит 15 минут, зная, что часовая стрелка проходит 5 делений за 1 час, то есть за то время, за которое минутная стрелка проходит 60 делений. 5 делений - 1 час (60 мин) х делений - 15 минут х=5*15:60=1,25 (делений) Теперь определим, на сколько градусов повернётся часовая стрелка, пока минутная поворачивается на 90 градусов (то есть минутная проходит 15 минут): 1 деление - 6 градусов 1,25 делений - х градусов х=1,25*6:1=7,5 (градусов) Угол между минутной и часовой стрелками составляет 90-7,5=82,5 градусов=82 градуса 30 минут
Минутная стрелка за 15 мин пройдёт 6*15=90 градусов.
Определим, сколько делений пройдёт часовая стрелка за то время, пока мин. стрелка проходит 15 минут, зная, что часовая стрелка проходит 5 делений за 1 час, то есть за то время, за которое минутная стрелка проходит 60 делений.
5 делений - 1 час (60 мин)
х делений - 15 минут х=5*15:60=1,25 (делений)
Теперь определим, на сколько градусов повернётся часовая стрелка, пока минутная поворачивается на 90 градусов (то есть минутная проходит 15 минут):
1 деление - 6 градусов
1,25 делений - х градусов х=1,25*6:1=7,5 (градусов)
Угол между минутной и часовой стрелками составляет
90-7,5=82,5 градусов=82 градуса 30 минут