Одним з відомих нам прикладів такого розкладання є розподільна властивість множення a(b + с) = ab + ас, якщо її записати у зворотному порядку: аb + ас – a(b + с). Це означає, що многочлен аb + ас розклали на два множники а і b + с.
Під час розкладання на множники многочленів із цілими коефіцієнтами множник, який виносять за дужки, обирають так, щоб члени многочлена, який залишиться в дужках, не мали спільного буквеного множника, а модулі їх коефіцієнтів не мали спільних дільників.
Розглянемо кілька прикладів.
Приклад 1. Розкласти вираз на множники:
1) 8m + 4;
2) at + 7ар;
3) 15а3b – 10а2b2.
Р о з в’ я з а н н я.
1)
Спільним множником є число 4, тому
8m + 4 = 4 . 2m + 4 ∙ 1 = 4(2m + 1).
2) Спільним множником є змінна а, тому
At + 7ap = a(t + 7p).
3) У даному випадку спільним числовим множником є найбільший спільний дільник чисел 10 і 15 – число 5, а спільним буквеним множником є одночлен а2b. Отже,
1) У даному випадку спільним множником є двочлен b = c.
Отже, 2m(B – С) + 3р(B – C) = (b – с)(2m + 3р).
2) Доданки мають множники у – t і t – у, які є протилежними виразами. Тому в другому доданку винесемо за дужки множник -1, одержимо: c(t – у) = – с(у – t).
Рассмотрим произведение чисел 24⋅73=1752.Один из множителей в этом произведении делится на 3, т.е. 24:3.Можно убедиться, что и всё произведение делится на 3, т.е. 1752:3=584. В произведении 25⋅58=1450 множитель 25 делится на 5.Также можно сделать вывод, что всё произведение делится на 5, т.е. 1450:5=290. Итак, признак делимости произведения:если хотя бы один из множителей делится на некоторое число, то и произведение делится на это число.Значит, если a делится на некоторое число с, то и ab также делится на это число с.Пример:Рассмотрим сумму чисел 12 и 21, т.е. (12+21).В этой сумме каждое из слагаемых делится на 3. Проверяя делимость суммы на 3, получим, что сумма 33 тоже делится на 3.Итак, признаки делимости суммы и разности чисел: Свойство 1.Если каждое слагаемое делится на некоторое число, то и вся сумма делится на это число, т.е.,если a делится на b, и c делится на b, то (a+c) делится на b.Свойство 2.Если одно слагаемое делится на некоторое число, а другое слагаемое не делится на это число, то и вся сумма не делится на это число, т.е.,если a делится на b, а c не делится на b, то (a+c) не делится на b.Пример:12 делится на 3, а 22 не делится на 3, то (12+22) не делится на 3. Свойство 3.Если одно слагаемое делится на некоторое число и сумма делится на это же число, то другое слагаемое тоже делится на это число, т.е.,если a делится на b, и (a+c) делится на b, то c делится на b.Пример:12 делится на 3 и (12+21) делится на 3, то 21 делится на 3.Свойство 4.Если одно число делится на некоторое другое число, которое делится на третье число, то первое число делится на третье число, т.е.,если a делится на c, и c делится на b, то a делится на b.Пример:48 делится на 12, и 12 делится на 3, то 48 делится на 3.Свойство 5.Если и уменьшаемое, и вычитаемое делятся на некоторое число, то и разность делится на это число.Пример:Разность (35−20) делится на 5, т.к. 35 делится на 5, и 20 делится на 5.
Одним з відомих нам прикладів такого розкладання є розподільна властивість множення a(b + с) = ab + ас, якщо її записати у зворотному порядку: аb + ас – a(b + с). Це означає, що многочлен аb + ас розклали на два множники а і b + с.
Під час розкладання на множники многочленів із цілими коефіцієнтами множник, який виносять за дужки, обирають так, щоб члени многочлена, який залишиться в дужках, не мали спільного буквеного множника, а модулі їх коефіцієнтів не мали спільних дільників.
Розглянемо кілька прикладів.
Приклад 1. Розкласти вираз на множники:
1) 8m + 4;
2) at + 7ар;
3) 15а3b – 10а2b2.
Р о з в’ я з а н н я.
1)
Спільним множником є число 4, тому
8m + 4 = 4 . 2m + 4 ∙ 1 = 4(2m + 1).
2) Спільним множником є змінна а, тому
At + 7ap = a(t + 7p).
3) У даному випадку спільним числовим множником є найбільший спільний дільник чисел 10 і 15 – число 5, а спільним буквеним множником є одночлен а2b. Отже,
15а3b – 10а2b2 = 5а2b ∙ 3а – 5a2b ∙ b = 5а2b(3а – 2b).
Приклад 2. Розкласти па множники:
1) 2m(b – с) + 3р(b – с);
2) х(у – t) + c(t – у).
Р о з в ‘ я з а н н я.
1) У даному випадку спільним множником є двочлен b = c.
Отже, 2m(B – С) + 3р(B – C) = (b – с)(2m + 3р).
2) Доданки мають множники у – t і t – у, які є протилежними виразами. Тому в другому доданку винесемо за дужки множник -1, одержимо: c(t – у) = – с(у – t).
Отже, х(у – t) + c(t – у) = х(у – t) – с(у – t) = (у – t) (х – с).