1)log4(2x-6)<1; ==> log4(2x-6)<log4(4) ==> 2x-6 < 4 ==> 2x < 4+6 ==> x < 10/2=5
2) log0,3(3x-5)<0; ==> log0,3(3x-5)<log0,3(1)<0 ==> 3x-5 < 1 ==> 3x < 1+5 ==> x < 6/3 = 2
остальные решаешь аналогично
3) x>5
4) x>12
5) x>9
6)log1/x(x-5)<-2 ==> log1/x(x-5)< log1/x((1/x)^(-2)) ==> log1/x(x-5)< log1/x(x^2) ==>
==> x-5 < x^2 ==> x^2 - x +5 >0
вычисляем производную = 2х -1
приравниваем к нулю и навходим точку минимума
2х -1 = 0 ==> x=1/2 = 0.5
в этой точке x^2 - x +5 = 0.5^2 - 0.5 +5 = 4.75 ==>
неравенство выполняется при всех значения х
1)log4(2x-6)<1; ==> log4(2x-6)<log4(4) ==> 2x-6 < 4 ==> 2x < 4+6 ==> x < 10/2=5
2) log0,3(3x-5)<0; ==> log0,3(3x-5)<log0,3(1)<0 ==> 3x-5 < 1 ==> 3x < 1+5 ==> x < 6/3 = 2
остальные решаешь аналогично
3) x>5
4) x>12
5) x>9
6)log1/x(x-5)<-2 ==> log1/x(x-5)< log1/x((1/x)^(-2)) ==> log1/x(x-5)< log1/x(x^2) ==>
==> x-5 < x^2 ==> x^2 - x +5 >0
вычисляем производную = 2х -1
приравниваем к нулю и навходим точку минимума
2х -1 = 0 ==> x=1/2 = 0.5
в этой точке x^2 - x +5 = 0.5^2 - 0.5 +5 = 4.75 ==>
неравенство выполняется при всех значения х
а = 3764 - 2546 b = 46789 - 5788
а = 1218 b = 41001
Проверка: 1218 + 2546 = 3764 Проверка: 46789 - 41001 = 5788
3) с * 345 = 43815 4) 2898 : d = 23
с = 43815 : 345 d = 2898 : 23
с = 127 d = 126
Проверка: 127 * 345 = 43815 Проверка: 2898 : 126 = 23
5) х : 540 = 360 6) у - 7127 = 835
х = 360 * 540 у = 835 + 7127
х = 194400 у = 7962
Проверка: 194400 : 540 = 360 Проверка: 7962 - 7127 = 835