Задание 11. Вариант 14.
Дана сила F₁(-2; 2; 1), приложенная в точке M(1; 0; -8), и точка N(11; 4; 0), относительно которой определить момент силы, его величину и углы к осям.
Задача имеет решения.
1) Векторы F₁ и MN расположить в одной плоскости. Момент определяется по формуле M = |F₁|*|MN|*sinα, где α - угол между векторами.
Вектор MN = (11-1; 4-0; 0-(-8)) = (10; 4; 8).
Модуль MN= √(100 + 16 + 64) = √180 = 6√5.
Модуль F₁(-2; 2; 1) = √(4 + 4 + 1) = √9 = 3.
cos α = (10*(-2) + 4*2 + 8*1) /((6√5)*3) = -4/(18√5) = -2/(9√5).
Находим синус угла: sin α = √(1 - cos²α) = √(1 - (4/405)) = √401/(9√5).
Находим момент: M = 3*6√5*(√401/9√5) = 2√401 ≈ 40,05 ед.
2) Момент относительно точки равен векторному произведению радиус-вектора точки приложения силы на вектор силы.
Находим векторное произведение силы F₁(-2; 2; 1) на вектор
MN (10; 4; 8),
i j k| i j
-2 2 1| -2 2
10 4 8| 10 4 = 16i + 10j - 8k + 16j - 4i - 20k =
= 12i + 26j - 28k = (12; 26; -28).
Находим модуль векторного произведения.
|M| = √(12² + 26² + (-28)²) = √(144 + 676 +784) = √1604 ≈ 40,04996879.
Осталось найти углы к осям.
cos(F₁_Ox) = 12/√1604, ∠ = 72,56487671 градуса,
cosF₁_Oy) = 26/√1604, ∠ = 49,51951465 градуса,
cosF₁_(Oz) = (-28)/√1604, ∠ = 134,3569759 градуса.
Всего было 15 туристов которые посетили хотя бы 1 остров.
Так как 5 человек посетили Торчелло, следовательно и два остальных острова они тоже посетили.
По тому:
13-5=8. Значит, на Мурано побывало 8 человек, помимо тех, кто был и на Торчелло.
9-5=4. Значит, на Бурано было только 4 человека, помимо тех, кто был на Торчелло.
Итого: 8-4=4.
Сказано, что было 15 пасажиров которые посетили хотя бы 1 остров, по тому 15-13=2.(значит, 2-е человек были только на Бурано). По тому:
4-2=2.
ответ: 2 человека было ровно на 2-х островах.
Задание 11. Вариант 14.
Дана сила F₁(-2; 2; 1), приложенная в точке M(1; 0; -8), и точка N(11; 4; 0), относительно которой определить момент силы, его величину и углы к осям.
Задача имеет решения.
1) Векторы F₁ и MN расположить в одной плоскости. Момент определяется по формуле M = |F₁|*|MN|*sinα, где α - угол между векторами.
Вектор MN = (11-1; 4-0; 0-(-8)) = (10; 4; 8).
Модуль MN= √(100 + 16 + 64) = √180 = 6√5.
Модуль F₁(-2; 2; 1) = √(4 + 4 + 1) = √9 = 3.
cos α = (10*(-2) + 4*2 + 8*1) /((6√5)*3) = -4/(18√5) = -2/(9√5).
Находим синус угла: sin α = √(1 - cos²α) = √(1 - (4/405)) = √401/(9√5).
Находим момент: M = 3*6√5*(√401/9√5) = 2√401 ≈ 40,05 ед.
2) Момент относительно точки равен векторному произведению радиус-вектора точки приложения силы на вектор силы.
Находим векторное произведение силы F₁(-2; 2; 1) на вектор
MN (10; 4; 8),
i j k| i j
-2 2 1| -2 2
10 4 8| 10 4 = 16i + 10j - 8k + 16j - 4i - 20k =
= 12i + 26j - 28k = (12; 26; -28).
Находим модуль векторного произведения.
|M| = √(12² + 26² + (-28)²) = √(144 + 676 +784) = √1604 ≈ 40,04996879.
Осталось найти углы к осям.
cos(F₁_Ox) = 12/√1604, ∠ = 72,56487671 градуса,
cosF₁_Oy) = 26/√1604, ∠ = 49,51951465 градуса,
cosF₁_(Oz) = (-28)/√1604, ∠ = 134,3569759 градуса.
Всего было 15 туристов которые посетили хотя бы 1 остров.
Так как 5 человек посетили Торчелло, следовательно и два остальных острова они тоже посетили.
По тому:
13-5=8. Значит, на Мурано побывало 8 человек, помимо тех, кто был и на Торчелло.
9-5=4. Значит, на Бурано было только 4 человека, помимо тех, кто был на Торчелло.
Итого: 8-4=4.
Сказано, что было 15 пасажиров которые посетили хотя бы 1 остров, по тому 15-13=2.(значит, 2-е человек были только на Бурано). По тому:
4-2=2.
ответ: 2 человека было ровно на 2-х островах.