Приведенный ниже текст получен путем автоматического извлечения из оригинального PDF-документа и предназначен для предварительного Изображения (картинки, формулы, графики) отсутствуют.
Пошаговое объяснение:
По группе предприятий, выпускающих один и тот же вид продукции,
рассматривается функция издержек:
y = a + bx + ε ,
где y - затраты на производство, тыс. д. е.
x - выпуск продукции, тыс. ед.
1 Задача
Вариант 1 Вариант 2 Вариант 3 Вариант 4 Вариант 5
b x y b x y b x y b x y b x y
1 9 69 1 9 68 1 8 67 1 8 65 1 9 69
2 12 73 2 11 72 2 10 70 2 10 70 2 11 73
3 13 95 3 12 93 3 11 87 3 12 87 3 12 99
4 14 87 4 14 98 4 15 92 4 14 98 4 13 88
5 15 96 5 16 87 5 15 98 5 14 90 5 14 91
6 17 98 6 16 92 6 16 90 6 15 96 6 15 100
7 18 105 7 18 99 7 18 96 7 16 99 7 17 114
8 19 111 8 19 111 8 19 113 8 19 106 8 18 103
9 21 107 9 20 100 9 21 105 9 21 100 9 20 109
10 23 129 10 23 125 10 23 125 10 23 120 10 22 125
Вариант 6 Вариант 7 Вариант 8 Вариант 9 Вариант 10
b x y b x y b x y b x y b x y
1 9 67 1 9 68 1 8 69 1 8 69 1 9 67
2 11 71 2 12 72 2 10 73 2 10 73 2 11 71
3 13 97 3 13 93 3 11 99 3 12 95 3 13 97
4 14 85 4 14 98 4 15 88 4 14 87 4 15 85
5 14 89 5 15 87 5 15 91 5 14 96 5 15 89
6 16 98 6 17 92 6 16 100 6 15 98 6 16 98
7 18 112 7 18 99 7 18 114 7 16 105 7 18 112
8 20 101 8 19 111 8 19 103 8 19 111 8 19 101
9 21 107 9 21 100 9 21 109 9 21 107 9 21 107
10 23 123 10 23 125 10 23 125 10 23 125 10 23 123
Требуется:
1. Построить линейное уравнение парной регрессии y от x .
2. Рассчитать линейный коэффициент парной корреляции и коэффициент
детерминации. Сделать выводы.
3. Оценить статистическую значимость уравнения регрессии в целом.
4. Оценить статистическую значимость параметров регрессии и корреляции.
5. Выполнить прогноз затрат на производство при прогнозном выпуске продукции,
составляющем 195 % от среднего уровня.
6. Оценить точность прогноза, рассчитать ошибку прогноза и его доверительный
интервал.
7. Оценить модель через среднюю ошибку аппроксимации.
3. Квадратное число – это число, являющееся квадратом некоторого целого числа.
4. Число 1 – кирпичик, из которого строились все остальные числа. Таким образом, 1 не считается простым числом и в наше время.
5. Треугольное число, которое является квадратом существует: например, 3 + 6 = 9
6. Треугольные числа обладают интересными свойствами. Например, можно заметить, что сумма двух последовательных треугольных чисел является квадратом (квадратным числом).
7. 1, 4, 9, 16, 25 – первые пять квадратных чисел.
8. 0, 3, 6, 15, 21 – первые пять треугольных чисел.
9. ?
10. Например, 1 + 3 + 5 + 7 + 9 = 25
11. Какие числа называют треугольными и пятиугольными числами?
12. Моя оценка, как поняла этот текст 10 из 10. Я поставила данную оценку, поэтому что эту тему мы применяем в своей повседневной жизни: на уроках математики.
Приведенный ниже текст получен путем автоматического извлечения из оригинального PDF-документа и предназначен для предварительного Изображения (картинки, формулы, графики) отсутствуют.
Пошаговое объяснение:
По группе предприятий, выпускающих один и тот же вид продукции,
рассматривается функция издержек:
y = a + bx + ε ,
где y - затраты на производство, тыс. д. е.
x - выпуск продукции, тыс. ед.
1 Задача
Вариант 1 Вариант 2 Вариант 3 Вариант 4 Вариант 5
b x y b x y b x y b x y b x y
1 9 69 1 9 68 1 8 67 1 8 65 1 9 69
2 12 73 2 11 72 2 10 70 2 10 70 2 11 73
3 13 95 3 12 93 3 11 87 3 12 87 3 12 99
4 14 87 4 14 98 4 15 92 4 14 98 4 13 88
5 15 96 5 16 87 5 15 98 5 14 90 5 14 91
6 17 98 6 16 92 6 16 90 6 15 96 6 15 100
7 18 105 7 18 99 7 18 96 7 16 99 7 17 114
8 19 111 8 19 111 8 19 113 8 19 106 8 18 103
9 21 107 9 20 100 9 21 105 9 21 100 9 20 109
10 23 129 10 23 125 10 23 125 10 23 120 10 22 125
Вариант 6 Вариант 7 Вариант 8 Вариант 9 Вариант 10
b x y b x y b x y b x y b x y
1 9 67 1 9 68 1 8 69 1 8 69 1 9 67
2 11 71 2 12 72 2 10 73 2 10 73 2 11 71
3 13 97 3 13 93 3 11 99 3 12 95 3 13 97
4 14 85 4 14 98 4 15 88 4 14 87 4 15 85
5 14 89 5 15 87 5 15 91 5 14 96 5 15 89
6 16 98 6 17 92 6 16 100 6 15 98 6 16 98
7 18 112 7 18 99 7 18 114 7 16 105 7 18 112
8 20 101 8 19 111 8 19 103 8 19 111 8 19 101
9 21 107 9 21 100 9 21 109 9 21 107 9 21 107
10 23 123 10 23 125 10 23 125 10 23 125 10 23 123
Требуется:
1. Построить линейное уравнение парной регрессии y от x .
2. Рассчитать линейный коэффициент парной корреляции и коэффициент
детерминации. Сделать выводы.
3. Оценить статистическую значимость уравнения регрессии в целом.
4. Оценить статистическую значимость параметров регрессии и корреляции.
5. Выполнить прогноз затрат на производство при прогнозном выпуске продукции,
составляющем 195 % от среднего уровня.
6. Оценить точность прогноза, рассчитать ошибку прогноза и его доверительный
интервал.
7. Оценить модель через среднюю ошибку аппроксимации.
1. Квадратные и треугольные числа
2. План:
• числа-квадраты
• прямоугольная таблица
• квадратные числа
• треугольные числа
• пятиугольные числа
3. Квадратное число – это число, являющееся квадратом некоторого целого числа.
4. Число 1 – кирпичик, из которого строились все остальные числа. Таким образом, 1 не считается простым числом и в наше время.
5. Треугольное число, которое является квадратом существует: например, 3 + 6 = 9
6. Треугольные числа обладают интересными свойствами. Например, можно заметить, что сумма двух последовательных треугольных чисел является квадратом (квадратным числом).
7. 1, 4, 9, 16, 25 – первые пять квадратных чисел.
8. 0, 3, 6, 15, 21 – первые пять треугольных чисел.
9. ?
10. Например, 1 + 3 + 5 + 7 + 9 = 25
11. Какие числа называют треугольными и пятиугольными числами?
12. Моя оценка, как поняла этот текст 10 из 10. Я поставила данную оценку, поэтому что эту тему мы применяем в своей повседневной жизни: на уроках математики.