Решение: Скорость сближения велосипедистов равна: 15-10=5 (км/час) Время сближения: 2 : 5=0,4 (час) Время движения (t) у обоих велосипедистов одинаковое. Первый велосипедист проедет расстояние: S1=15*t Обозначим количество кругов у первого велосипедиста за (n1) При количестве кругов n1, расстояние пройденное первым велосипедистом составит: S1=5*0,4*n1=2n1 Приравняем оба выражения S1 15t=2n1 Второй велосипедист проедет расстояние равное: S2=10*t Обозначим количество кругов у второго велосипедиста за (n2) При количестве кругов n2, расстояние пройденное вторым велосипедистом составит: S2=5*0,4*n2=2n2 Приравняем оба выражения S2 10t=2n2 Получилось два уравнения: 15t=2n1 10t=2n2 Разделим первое уравнение на второе, получим: 15t/10t=2n1/2n2 15/10=n1/n2 Делаем вывод, что минимальное количество кругов до встречи равно: n1=15 n2=10 Из первого уравнения 15t=2n1 найдём значение (t) t=2n1/15 подставим в это выражение n1=15 t=2*15/15=2 (часа)
ответ: Первый велосипедист впервые догонит второго велосипедиста через 2 часа.
Скорость сближения велосипедистов равна:
15-10=5 (км/час)
Время сближения:
2 : 5=0,4 (час)
Время движения (t) у обоих велосипедистов одинаковое.
Первый велосипедист проедет расстояние:
S1=15*t
Обозначим количество кругов у первого велосипедиста за (n1)
При количестве кругов n1, расстояние пройденное первым велосипедистом составит:
S1=5*0,4*n1=2n1
Приравняем оба выражения S1
15t=2n1
Второй велосипедист проедет расстояние равное:
S2=10*t
Обозначим количество кругов у второго велосипедиста за (n2)
При количестве кругов n2, расстояние пройденное вторым велосипедистом составит:
S2=5*0,4*n2=2n2
Приравняем оба выражения S2
10t=2n2
Получилось два уравнения:
15t=2n1
10t=2n2
Разделим первое уравнение на второе, получим:
15t/10t=2n1/2n2
15/10=n1/n2
Делаем вывод, что минимальное количество кругов до встречи равно:
n1=15
n2=10
Из первого уравнения 15t=2n1 найдём значение (t)
t=2n1/15 подставим в это выражение n1=15
t=2*15/15=2 (часа)
ответ: Первый велосипедист впервые догонит второго велосипедиста через 2 часа.
Пусть АС = х м, ВС = х - 1/10 м, АВ = 1/4 м. Периметр АВС = 14/25 м.
Уравнение: х + х - 1/10 + 1/4 = 14/25
2х - 10/100 + 25/100 = 56/100
2х = 56/100 + 10/100 - 25/100
2х = 41/100
х = 41/100 : 2
х = 41/100 * 1/2
х = 41/200 (м) - сторона АС
41/200 - 1/10 = 41/200 - 20/200 = 21/200 (м) - сторона ВС
Проверка: 41/200 + 21/200 + 50/200 = 112/200 = 14/25 - периметр
ответ: АС = 41/200 м.
по действиям).
1) 14/25 - 1/4 = 56/100 - 25/100 = 31/100 (м) - сумма длин оставшихся двух сторон;
2) 31/100 - 1/10 = 31/100 - 10/100 = 21/100 (м) - поровну для каждой стороны;
3) 21/100 : 2 = 21/100 * 1/2 = 21/200 (м) - длина стороны ВС;
4) 21/200 + 1/10 = 21/200 + 20/200 = 41/200 (м) - длина стороны АС.
ответ: АС = 41/200 м.