Пусть производительность первого рабочего x (1/ч) , второго -- y (1/ч) . Тогда первому рабочему потребуется на выполнение всего задания (1/x) часов, второму -- (1/y) часов. Записываем первое уравнение: (1) 1/y - 1/x = 3. За 4 часа первый рабочий выполнит (4x) задания, второй за 3 часа выполнит (3y) задания. Вместе они выполнят всё задание, т. е. 1. Имеем второе уравнение: (2) 4x + 3y = 1 => y = (1 - 4x)/3 Подставляя в (1), получим 3/(1-4x) - 1/x = 3. Умножаем на x(1-4x): 3x - (1-4x) = 3x(1-4x); 7x -1 = 3x - 12x^2; 12x^2 + 4x - 1 = 0. Нас интересует только положительное значение x, поэтому x = (-2 + sqrt(2^2+12))/12 = (-2+4)/12 = 1/6. Значит, первому рабочему на выполнение всего задания потребуется 1/x = 6 часов.
1. а) -2,16 меньше чем 2,1; б) -5 целых 7/11 больше -5 целых 8/11; в) -7,5 меньше 0;
г) -1,19 больше - 1,3; д) - 14,78 меньше 1,478; е) модуль числа -3 целых 3/7 больше 3и2/7
2. 3; 1,95; -6,1; -6 целых 2/7; -38,9; -40; -46 целых 2/9; -58,1
3. а) -66; б) 3,2; в)-16; г) -17,81; д) -19,55 (обрати внимание, некорректное выражение)
е) -8,45
4. пусть х - искомое число, тогда
0,14х - 26 + 3,2 = -17,2
х = 40
5. пусть х - ширина, длина (х + 8), тогда отношение ширины к длине равно:
х/(х+8) = 2/3
х = 16 - это ширина; 16 + 8 = 24 - это длина
Тогда первому рабочему потребуется на выполнение всего задания (1/x) часов, второму -- (1/y) часов. Записываем первое уравнение:
(1) 1/y - 1/x = 3.
За 4 часа первый рабочий выполнит (4x) задания, второй за 3 часа выполнит (3y) задания. Вместе они выполнят всё задание, т. е. 1. Имеем второе уравнение:
(2) 4x + 3y = 1 => y = (1 - 4x)/3
Подставляя в (1), получим
3/(1-4x) - 1/x = 3. Умножаем на x(1-4x):
3x - (1-4x) = 3x(1-4x); 7x -1 = 3x - 12x^2;
12x^2 + 4x - 1 = 0. Нас интересует только положительное значение x, поэтому
x = (-2 + sqrt(2^2+12))/12 = (-2+4)/12 = 1/6.
Значит, первому рабочему на выполнение всего задания потребуется 1/x = 6 часов.