. tg A = BC / AC найдем BC по теореме Пифагора BC^2 = корень из 109 в квадрате - 10 BC^2 = 109 - 100 BC^2 = 9 BC = 3 tg A = 3/10 tg A = 0.3
2. sin A = CH / CA Найдем CA по теореме Пифагора CA^2 = CH^2 + AH^2 ( поскольку CH - высота, то она делит основание AB пополам, отсюда AH = 15/2 = 7.5 ) CA^2 = 12^2 + 7.5^2 CA^2 = 144 + 56.25 CA^2 = 200.25 CA = корень из 200.25 sin A = 12 / корень из 200.25
3. сперва найдем сторону BC Sin A = BC / AB 2/5 = BC / 40 через пропорцию получаем 5BC = 40 * 2 BC = 80 / 5 BC = 16 Теперь найдем высоту CH cos C = CH/BC поскольку CH - высота, а угол С прямой, по условию, то угол BCH = 90/2 = 45 гр cos 45 = СH / 16 CH = 8 корей из 2 Поскольку CH - высота, т.е перпендикуляр, опущенный на AB, то треугольник HBC - прямоугольный, угол H - 90 гр. Теперь найдем HB по теореме Пифагора HB^2 = 16^2 - 8 корней из 2 в квадрате HB^2 = 256 - 128 HB^2 = 128 HB = корень из 128
tg A = BC / AC
найдем BC по теореме Пифагора
BC^2 = корень из 109 в квадрате - 10
BC^2 = 109 - 100
BC^2 = 9
BC = 3
tg A = 3/10
tg A = 0.3
2.
sin A = CH / CA
Найдем CA по теореме Пифагора
CA^2 = CH^2 + AH^2
( поскольку CH - высота, то она делит основание AB пополам, отсюда AH = 15/2 = 7.5 )
CA^2 = 12^2 + 7.5^2
CA^2 = 144 + 56.25
CA^2 = 200.25
CA = корень из 200.25
sin A = 12 / корень из 200.25
3.
сперва найдем сторону BC
Sin A = BC / AB
2/5 = BC / 40
через пропорцию получаем
5BC = 40 * 2
BC = 80 / 5
BC = 16
Теперь найдем высоту CH
cos C = CH/BC
поскольку CH - высота, а угол С прямой, по условию, то угол BCH = 90/2 = 45 гр
cos 45 = СH / 16
CH = 8 корей из 2
Поскольку CH - высота, т.е перпендикуляр, опущенный на AB, то треугольник HBC - прямоугольный, угол H - 90 гр.
Теперь найдем HB по теореме Пифагора
HB^2 = 16^2 - 8 корней из 2 в квадрате
HB^2 = 256 - 128
HB^2 = 128
HB = корень из 128
В решении.
Пошаговое объяснение:
1) -5 * 49 * 4 = (-5 * 4) * 49 = (-20) * 49 = -980;
2) -0,2 * 3,8 - 3,7 * (-0,2) = (-0,2) * (3,8 - 3,7) = (-0,2) * 0,1 = -0,02;
3) -3/7 * (-2/3) * 2 1/3 * (-2 1/4) =
= -3/7 * (-2/3) * 7/3 * (-9/4) =
= ((-3/7) * 7/3) * ((-2/3) * (-9/4)) =
= (-1) * 3/2 = -3/2 = -1,5;
4) (-2/3 + 2 4/9) * 9 =
= (-2/3 + 22/9) * 9 =
= -6 + 22 = 16;
5) (2х + 0,2х)*(х - 0,5) = 0
2,2х * (х - 0,5) = 0
2,2х² - 1,1х = 0 неполное квадратное уравнение
2,2х*(х - 0,5) = 0
2,2х = 0
х₁ = 0;
х - 0,5 = 0
х₂ = 0,5.