Слагаемые, содержащие С перенесём в левую часть неравенства, а слагаемые с D - в правую, получим: 0,89 с +14,11 5 < 13d + 2d 15 с < 15 d. разделим обе части на 15 с < d. аналогично решаем остальные, х+8у<4х+5у х-4х< 5у - 8у -3х < -3у, разделим обе части неравенства на -3, знак неравенства поменяется на противоположный, получаем х>у 1,2s-2s > 4.3t -5.1t -0.8s > -.0.8t . делим на - 0,8 и знак неравенства меняем на противоположный s<t
Дано уравнение: √(x - 2) = x - 3.
ОДЗ: х - 2 > 0, x > 2.
Надо обе части уравнения возвести в квадрат.
х - 2 = х² - 6х + 9.
Получаем квадратное уравнение:
х² - 7x + 11 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-7)^2-4*1*11=49-4*11=49-44=5;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√5-(-7))/(2*1)=(√5+7)/2=√5/2+7/2=√5/2+3.5~~4.618034;
x_2=(-√5-(-7))/(2*1)=(-√5+7)/2=-√5/2+7/2=-√5/2+3.5~~2.381966.
Получили 2 корня - это результат лишнего корня при возведении в квадрат, но должна быть одна точка пересечения одной ветви параболы и прямой.
Второй корень не подходит.
ответ: х1 = √5/2+3,5.
15 с < 15 d. разделим обе части на 15
с < d.
аналогично решаем остальные,
х+8у<4х+5у
х-4х< 5у - 8у
-3х < -3у, разделим обе части неравенства на -3, знак неравенства поменяется на противоположный, получаем х>у
1,2s-2s > 4.3t -5.1t
-0.8s > -.0.8t . делим на - 0,8 и знак неравенства меняем на противоположный
s<t