333Б. Прочитайте определение спорта. интеллект Обратите внимание на следующие признаки моральный спорта: 1) вид активности; 2) цель занятий спортом; 3) предназначение спорта. Спорт это вид физической и интеллектуальной активно- сти. Люди занимаются спортом, тренируются, чтобы участво- 46
чение буквенных переменных может оказаться недопустимым, если знаменатель дроби при этих значениях равен нулю. во всех остальных случаях значение переменных являются допустимыми, т. к. дробь можно вычислить.
пример 2. установить, при каких значениях переменной не имеет смысла дробь .
решение. чтобы данное выражение имело смысл, необходимо и достаточно, чтобы знаменатель дроби не равнялся нулю. таким образом, недопустимыми будут только те значения переменной, при которых знаменатель будет равняться нулю. знаменатель дроби , поэтому решим линейное уравнение:
.
следовательно, при значении переменной дробь не имеет смысла.
ответ: -5.
из решения примера вытекает правило нахождения недопустимых значений переменных – знаменатель дроби приравнивается к нулю и находятся корни соответствующего уравнения.
пример 3. установить, при каких значениях переменной не имеет смысла дробь.
решение. .
ответ. .
пример 4. установить, при каких значениях переменной не имеет смысла дробь .
решение..
встречаются и другие формулировки данной задачи – найти область определения или область допустимых значений выражения (одз). это означает – найти все допустимые значения переменных. в нашем примере – это все значения, кроме . область определения удобно изображать на числовой оси.
для этого на ней выколем точку , как это указано на рисунке:
рис. 1
таким образом, областью определения дроби будут все числа, кроме 3.
ответ..
пример 5. установить, при каких значениях переменной не имеет смысла дробь .
решение..
изобразим полученное решение на числовой оси:
рис. 2
ответ..
графическое представление области допустимых (одз) и недопустимых значений переменных в дробях
пример 6. установить, при каких значениях переменных не имеет смысла дробь .
решение.. мы получили равенство двух переменных, приведем числовые примеры: или и т. д.
изобразим это решение на графике в декартовой системе координат:
рис. 3. график функции
координаты любой точки, лежащей на данном графике, не входят в область допустимых значений дроби.
ответ. .
случай типа "деление на ноль"
в рассмотренных примерах мы сталкивались с ситуацией, когда возникало деление на ноль. теперь рассмотрим случай, когда возникает более интересная ситуация с делением типа .
пример 7. установить, при каких значениях переменных не имеет смысла дробь .
решение..
получается, что дробь не имеет смысла при . но можно возразить, что это не так, потому что: .
может показаться, что если конечное выражение равно 8 при , то и исходное тоже возможно вычислить, а, следовательно, имеет смысл при . однако, если подставить в исходное выражение, то получим – не имеет смысла.
ответ..
чтобы подробнее разобраться с этим примером, решим следующую задачу: при каких значениях указанная дробь равна нулю?
(дробь равна нулю, когда ее числитель равен нулю) . но необходимо решить исходное уравнение с дробью, а она не имеет смысла при , т. к. при этом значении переменной знаменатель равен нулю. значит, данное уравнение имеет только один корень .
правило нахождения одз
таким образом, можем сформулировать точное правило нахождения области допустимых значений дроби: для нахожденияодз дроби необходимо и достаточно приравнять ее знаменатель к нулю и найти корни полученного уравнения.
мы рассмотрели две основные задачи: вычисление значения дроби при указанных значениях переменных и нахождение области допустимых значений дроби.
рассмотрим теперь еще несколько , которые могут возникнуть при работе с дробями.
разные и выводы
пример 8. докажите, что при любых значениях переменной дробь .
доказательство. числитель – число положительное. . в итоге, и числитель, и знаменатель – положительные числа, следовательно, и дробь является положительным числом.
доказано.
пример 9. известно, что , найти .
решение. поделим дробь почленно . сокращать на мы имеем право, с учетом того, что является недопустимым значением переменной для данной дроби.
ответ..
на данном уроке мы рассмотрели основные понятия, связанные с дробями. на следующем уроке мы рассмотрим основное свойство дроби.
Глава 1. сержант гвардии отец петра гринева вышел в отставку; в семье было девять детей, но все, кроме петра, умерли в младенчестве. петрушу еще до появления на свет записали в семеновский полк. воспитывает мальчика крепостной дядька савельич, под руководством которого петруша осваивает грамоту и учится «судить о достоинствах борзого кобеля». позже к нему выписывают француза бопре, который должен был учить мальчика «по-французски, по- и другим наукам», но воспитанием петруши он не занимался, а пил и гулял. отец вскоре обнаружил это и выгнал француза. на семнадцатом году отец отправляет петрушу на службу, но не в петербург, как надеялся сын, а в оренбург. по пути гринев знакомится в трактире с ротмистром зуриным, который учит его играть на бильярде, спаивает и выигрывает у него 100 рублей. гринев «вел себя, как мальчишка, вырвавшийся на волю». наутро зурин требует выигрыш. желая показать характер, гринев заставляет савельича, несмотря на его протесты, выдать деньги, и, пристыженный, уезжает из симбирска. план пересказа 1. жизнь недоросля петруши гринева. 2. петр отправляется на службу в оренбург. 3. незнакомец спасает гринева в буран, петр дарит «вожатому» заячий тулупчик. 4. знакомство гринева с обитателями белогорской крепости. 5. дуэль гринева и швабрина. 6. петр не получает благословения своих родителей на свадьбу с машей мироновой. 7. жители крепости узнают о приближении войска емельяна пугачева. 8. пугачев устанавливает в крепости свою власть. 9. швабрин переходит на сторону пугачева. мятежник отпускает гринева, припомнив его заячий тулупчик. 10. швабрин становится комендантом крепости и принуждает машу, оставшуюся сиротой, выйти за него замуж. 11. гринев и савельич едут на маше и снова встречаются с пугачевым. 12. пугачёв отпускает машу с гриневым. 13. петр отправляет машу к своим родителям, а сам воюет против пугачева. 14. гринев арестован по доносу швабрина. 15. маша добивается справедливости у императрицы.
чение буквенных переменных может оказаться недопустимым, если знаменатель дроби при этих значениях равен нулю. во всех остальных случаях значение переменных являются допустимыми, т. к. дробь можно вычислить.
пример 2. установить, при каких значениях переменной не имеет смысла дробь .
решение. чтобы данное выражение имело смысл, необходимо и достаточно, чтобы знаменатель дроби не равнялся нулю. таким образом, недопустимыми будут только те значения переменной, при которых знаменатель будет равняться нулю. знаменатель дроби , поэтому решим линейное уравнение:
.
следовательно, при значении переменной дробь не имеет смысла.
ответ: -5.
из решения примера вытекает правило нахождения недопустимых значений переменных – знаменатель дроби приравнивается к нулю и находятся корни соответствующего уравнения.
рассмотрим несколько аналогичных примеров.
пример 3. установить, при каких значениях переменной не имеет смысла дробь.
решение. .
ответ. .
пример 4. установить, при каких значениях переменной не имеет смысла дробь .
решение..
встречаются и другие формулировки данной задачи – найти область определения или область допустимых значений выражения (одз). это означает – найти все допустимые значения переменных. в нашем примере – это все значения, кроме . область определения удобно изображать на числовой оси.
для этого на ней выколем точку , как это указано на рисунке:
рис. 1
таким образом, областью определения дроби будут все числа, кроме 3.
ответ..
пример 5. установить, при каких значениях переменной не имеет смысла дробь .
решение..
изобразим полученное решение на числовой оси:
рис. 2
ответ..
графическое представление области допустимых (одз) и недопустимых значений переменных в дробяхпример 6. установить, при каких значениях переменных не имеет смысла дробь .
решение.. мы получили равенство двух переменных, приведем числовые примеры: или и т. д.
изобразим это решение на графике в декартовой системе координат:
рис. 3. график функции
координаты любой точки, лежащей на данном графике, не входят в область допустимых значений дроби.
ответ. .
случай типа "деление на ноль"в рассмотренных примерах мы сталкивались с ситуацией, когда возникало деление на ноль. теперь рассмотрим случай, когда возникает более интересная ситуация с делением типа .
пример 7. установить, при каких значениях переменных не имеет смысла дробь .
решение..
получается, что дробь не имеет смысла при . но можно возразить, что это не так, потому что: .
может показаться, что если конечное выражение равно 8 при , то и исходное тоже возможно вычислить, а, следовательно, имеет смысл при . однако, если подставить в исходное выражение, то получим – не имеет смысла.
ответ..
чтобы подробнее разобраться с этим примером, решим следующую задачу: при каких значениях указанная дробь равна нулю?
(дробь равна нулю, когда ее числитель равен нулю) . но необходимо решить исходное уравнение с дробью, а она не имеет смысла при , т. к. при этом значении переменной знаменатель равен нулю. значит, данное уравнение имеет только один корень .
правило нахождения одзтаким образом, можем сформулировать точное правило нахождения области допустимых значений дроби: для нахожденияодз дроби необходимо и достаточно приравнять ее знаменатель к нулю и найти корни полученного уравнения.
мы рассмотрели две основные задачи: вычисление значения дроби при указанных значениях переменных и нахождение области допустимых значений дроби.
рассмотрим теперь еще несколько , которые могут возникнуть при работе с дробями.
разные и выводыпример 8. докажите, что при любых значениях переменной дробь .
доказательство. числитель – число положительное. . в итоге, и числитель, и знаменатель – положительные числа, следовательно, и дробь является положительным числом.
доказано.
пример 9. известно, что , найти .
решение. поделим дробь почленно . сокращать на мы имеем право, с учетом того, что является недопустимым значением переменной для данной дроби.
ответ..
на данном уроке мы рассмотрели основные понятия, связанные с дробями. на следующем уроке мы рассмотрим основное свойство дроби.