Что такое точка зрения? Как часто вы отстаиваете свою точку зрения? Совпадает ли ваша точка зрения с мнением окружающих? Приводите ли вы аргументы и доказательства в поддержку своей точки зрения? Как лучше отстоять свою точку зрения?
Сейчас на улице вечер! Все люди спешат домой кто из работы, кто из школы... Я в данный момент сама иду из школы. И решила понаблюдать какую жизнь ведет мой город.Кругом ездят такси, троллейбусы. Кафешки готовы принять посетителей. Недалеко слышен детский смех, т.к недалеко закрывается детский садик. Они ловко пересказывают родителям как они провели день. И уговаривают их сходить в парк развлечений или сходить в кинотеатр посмотреть только что вышедший мультфильм. Если обратить внимание на людей, то их можно разделить на 2 группы: одни идут веселые с искрящейся улыбкой, другие возвращаются с работы чернее тучи чем и портят настроение окружающим. Мой город живет аактивной жизнью и я рада что смогла вам немного о нем рассказать. Я сворачиваю свой рассказ т.к уже подхожу к дому. P/S Я не знаю понрался мой небольшой репортаж тебе! но буду рада если он тебе
То есть оба куска смещены по оси ОХ на 3 единицы вправо, а смещение по ОУ зависит от самого куска: левый кусок (x<3)(x<3) смещен на 7 единиц вниз, а правый (x>3)(x>3) - на 5 единиц вниз.
Кстати, в x=3x=3 - разрыв, поэтому на графике будут две выколотые точки - слева и справа.
Сам график строится так:
Строятся полностью оба куска (довольно легко, по факту из новой точки - в 1-ом куске (3;-5), во 2-м (3;-7) строим самые параболы y=x^2y=x
2
, ну то есть мысленно представляем, что, например, точка (3;-5) является началом координат и от неё параболку шаблонную строим с заученной наизусть таблицей) и на каждом интервале остается только та часть, которая указана в системе.
Картинка 1 - два графика разным цветом
Картинка 2 - итоговый график, то есть после того, как ненужные части были убраны и был добавлен разрыв.
Очевидно, что здесь график будет основан на параболе.
Сейчас посмотрим, что будет при раскрытии модуля
\displaystyle |x-3| = \left \{ {{x-3,x>3} \atop {3-x, x<3}} \right.∣x−3∣={
3−x,x<3
x−3,x>3
Не стал рассматривать x=3x=3 , потому что он в знаменателе дроби.
При положительном раскрытии дробь равна 1, при отрицательном раскрытии дробь равна -1.
Итого имеем:
\displaystyle y=\left \{ {{x^2-6x+1+3, x>3} \atop {x^2-6x-1+3, x<3}} \right.y={
x
2
−6x−1+3,x<3
x
2
−6x+1+3,x>3
То есть \displaystyle y=\left \{ {{x^2-6x+4, x>3} \atop {x^2-6x+2, x<3}} \right.y={
x
2
−6x+2,x<3
x
2
−6x+4,x>3
Чтобы было удобно строить, выделим полный квадрат и увидим, что оба куска различаются лишь расположением по оси ОУ, а так та же парабола.
\displaystyle y=\left \{ {{x^2-6x+9-9+4=(x-3)^2-5, x>3} \atop {x^2-6x+9-9+2=(x-3)^2-7, x<3}} \right.y={
x
2
−6x+9−9+2=(x−3)
2
−7,x<3
x
2
−6x+9−9+4=(x−3)
2
−5,x>3
То есть оба куска смещены по оси ОХ на 3 единицы вправо, а смещение по ОУ зависит от самого куска: левый кусок (x<3)(x<3) смещен на 7 единиц вниз, а правый (x>3)(x>3) - на 5 единиц вниз.
Кстати, в x=3x=3 - разрыв, поэтому на графике будут две выколотые точки - слева и справа.
Сам график строится так:
Строятся полностью оба куска (довольно легко, по факту из новой точки - в 1-ом куске (3;-5), во 2-м (3;-7) строим самые параболы y=x^2y=x
2
, ну то есть мысленно представляем, что, например, точка (3;-5) является началом координат и от неё параболку шаблонную строим с заученной наизусть таблицей) и на каждом интервале остается только та часть, которая указана в системе.
Картинка 1 - два графика разным цветом
Картинка 2 - итоговый график, то есть после того, как ненужные части были убраны и был добавлен разрыв.