0.4. Выполните указанные действия и приведите многочлен к стан- дартному виду:
1) (4a2b — Заb?) + (-ab + 2ab?);
2) (у? – 3y) + (3y - 2y?) - (4 - 2y”);
3) 2x2 - x(2x – 5y) - y(2х - у);
4) 7m(Зm + 2n) - Зm(7n - 2m);
5) (5р - 4q) (2р - 2q);
6) (а2 - 2ab)(a? - 5ab + 3b2)
Задание № 4:
В двух корзинах 79 яблок, причём 7/9 первой корзины составляют зелёные яблоки, а 9/17 второй корзины - красные яблоки. Сколько красных яблок во второй корзине?
получаем, что яблок в первой корзине делится на 9, а число яблок во второй корзине делится на 17
9х+17у=79
х=1: 9+17у=79; 17у=70; у не целое
х=2: 18+17у=79; 17у=61; у не целое
х=3: 27+17у=79; 17у=52; у не целое
х=4: 36+17у=79; 17у=43; у не целое
х=5: 45+17у=79; 17у=34; у=2
х=6: 54+17у=79; 17у=25; у не целое
х=7: 63+17у=79; 17у=16; у<1
значит в первой корзине 9*5=45 яблок, во второй - 17*2=34, (9/17)*34=18 красных яблок
ответ: 18
f (x) = (3x + 2)³·(2x - 1)⁴
f'(x) = 3·(3x + 2)²·3·(2x - 1)⁴ + (3x + 2)³·4·(2x - 1)³·2 = (3x + 2)²·(2x - 1)³·(9·(2x - 1) + 8·(3x + 2)) = (3x + 2)²·(2x - 1)³·(18x - 9 + 24x + 16) = (3x + 2)²·(2x - 1)³·(42x + 7) = 7·(3x + 2)²·(2x - 1)³·(6x + 1)
2.
f (x) = x² - x - 6
f'(x) = 2x - 1
Координаты x точек пересечения с Oх:
x² - x - 6 = 0
По теореме Виета:
x₁ = -2
x₂ = 3
Координата x точки пересечения с Oy: x₃ = 0.
f'(-2) = 2·(-2) - 1 = -5
f'(3) = 2·3 - 1 = 5
f'(0) = 2·0 - 1 = -1
3.
(cos 2x + 3·tg π/8)' ≥ 2·cos x
-2·sin 2x ≥ 2·cos x
-sin 2x ≥ cos x
cos x + sin 2x ≤ 0
cos x + 2·sin x·cos x ≤ 0
cos x·(1 + 2·sin x) ≤ 0
cos x ≤ 0 cos x ≥ 0
(1 + 2·sin x) ≥ 0 (1 + 2·sin x) ≤ 0
cos x ≤ 0 cos x ≥ 0
sin x ≥ -1/2 sin x ≤ -1/2
x ∈ [π/2 + 2πn; 3π/2 + 2πn], n ∈ Z x ∈ [-π/2 + 2πm; π/2 + 2πm], m ∈ Z
x ∈ [-π/6 + 2πk; 7π/6 + 2πk], k ∈ Z x ∈ [7π/6 + 2πp; 11π/6 + 2πp], p ∈ Z
x ∈ [π/2 + 2πn; 7π/6 + 2πn], n ∈ Z x ∈ [3π/2 + 2πk; 11π/6 + 2πk], k ∈ Z
x ∈ [π/2 + 2πn; 7π/6 + 2πn] ∪ [3π/2 + 2πn; 11π/6 + 2πn), n ∈ Z