А) Каждая из команд сыграет по 15-1 = 14 игр на своём поле. Так как в каждой игре ровно одна команда играет на своём поле, то всего игр 15 * 14 = 210 (пр. умн. тут работает) б) Проще всего понять, что этот случай отличается от предыдущего тем, что вместо двух игр каждая пара играет только одну игру, поэтому всего игр в 2 раза меньше, т.е. 105. В лоб тут правило умножения не применить. Хотя, если постараться, можно: число пар равно 15*14/2 = 105 (тут пр.умн. нет), но каждая пара играет одинаковое число встреч (а именно, одну), поэтому всего матчей 105 * 1 = 105 (пр. умн. работает)
Для применения правила умножения нужно не только, чтобы из каждой "вершины" вело одинаковое число "путей", но и чтобы "пути" не вели в те "вершины", в которых мы считаем число вариантов.
сгруппируем слагаемые скобками;
= (35a 2+7a 2b 2) + (5b+b 3) =
вынесем за скобки общий множитель первой,
а затем и второй группы;
= 7a 2 • (5+b 2) + b • (5+b 2) =
у нас получилось выражение из двух слагаемых, в каждом
из которых присутствует общий множитель (5+b 2).
Его мы вынесем за скобку;
= (7a 2+b) • (5+b 2) .
Значит:
35a 2+7a 2b 2+5b+b 3 = (7a 2+b) (5+b 2) .
Разложим на множители ещё один многочлен :
10b 2a – 15b 2 – 8аb + 12b + 6а – 9 =
сгруппируем слагаемые скобками;
= (10b 2a – 15b 2) – (8аb – 12b) + (6а – 9) =
вынесем за скобки общий множитель первой,
а затем второй и третьей группы;
= 5b 2 • (2a – 3) – 4b • (2а – 3) + 3 • (2а – 3) =
у нас получилось выражение из трех слагаемых, в каждом
из которых присутствует общий множитель (2а – 3).
Его мы вынесем за скобку;
= (5b 2 – 4b + 3) • (2a – 3) .
б) Проще всего понять, что этот случай отличается от предыдущего тем, что вместо двух игр каждая пара играет только одну игру, поэтому всего игр в 2 раза меньше, т.е. 105.
В лоб тут правило умножения не применить. Хотя, если постараться, можно: число пар равно 15*14/2 = 105 (тут пр.умн. нет), но каждая пара играет одинаковое число встреч (а именно, одну), поэтому всего матчей 105 * 1 = 105 (пр. умн. работает)
Для применения правила умножения нужно не только, чтобы из каждой "вершины" вело одинаковое число "путей", но и чтобы "пути" не вели в те "вершины", в которых мы считаем число вариантов.