1) и сверху и снизу приведем к общему знаменателю: ((ab+a)\b)\((ab-a)\b) вынесем общий множитель, сократим \b, получим a(b+1) \ a(b-1) сократим а, получим (b+1) \ (b-1) .
3) х^2+2x-1≤0 найдем корни: D=4-4=0; D=0, следовательно уравнение имеет смежные ("одинаковые" ) корни, найдем их по формуле х1,2= -b\2a х1,2 =-2\2=-1. В это точке функция равна нулю. Ветви параболы направлены вверх, схематично можно зарисовать и станет видно, что функция на всей своей протяженности >0, только в точке -1 равна нулю, это и будет ответом на вопрос. ответ: х=1
4. Среднее арифметическое - сложить все и разделить на количество. (22+24+28+30+32+18+21) /7 = 175/7=25. Медиана - середина ряда данных, для того чтобы найти ее выпишем весь ряд данных по возрастанию: 18, 21, 22, 24, 28, 30, 32. Теперь попарно зачеркиваем бОльшее и Меньшее число, постепенно приближаясь к середине. Если там останется одно число - оно и будет медианой, если пара чисел - медианой будет их среднее арифметическое. здесь медиана - 24. Спрашивают. на сколько отличается ср.ар и медина. 25-24=1. ответ: 1
5. Странно, что это дают в ГИА, я такого в пробниках еще не встречал.
Зная что один из корней - множитель 75, подберем его и проверим. х1=3, сделаем проверку. (3^3)-3*(3^2) -25*3 + 75 = 81-81-75+75=0 Убедились, что один из корней равен трем. теперь разделим весь этот многочлен на х-3 (на найденный корень), получим: X^2-25=0 X^2=25 x=±5
Сомневаюсь, что это дадут в ГИА - это полноценный десятый класс. х1=3, х2=-5, х3=5. ответ: 3, -5, 5
35a 2+7a 2b 2+5b+b 3 =
сгруппируем слагаемые скобками;
= (35a 2+7a 2b 2) + (5b+b 3) =
вынесем за скобки общий множитель первой,
а затем и второй группы;
= 7a 2 • (5+b 2) + b • (5+b 2) =
у нас получилось выражение из двух слагаемых, в каждом
из которых присутствует общий множитель (5+b 2),
который мы вынесем за скобку;
= (7a 2+b) • (5+b 2) .
Значит:
35a 2+7a 2b 2+5b+b 3 = (7a 2+b) (5+b 2) .
Разложим на множители ещё один многочлен :
10b 2a – 15b 2 – 8аb + 12b + 6а – 9 =
сгруппируем слагаемые скобками;
= (10b 2a – 15b 2) – (8аb – 12b) + (6а – 9) =
вынесем за скобки общий множитель первой,
а затем второй и третьей группы;
= 5b 2 • (2a – 3) – 4b • (2а – 3) + 3 • (2а – 3) =
у нас получилось выражение из трех слагаемых, в каждом
из которых присутствует общий множитель (2а – 3),
который мы вынесем за скобку;
= (5b 2 – 4b + 3) • (2a – 3) .
1) и сверху и снизу приведем к общему знаменателю:
((ab+a)\b)\((ab-a)\b) вынесем общий множитель, сократим \b, получим
a(b+1) \ a(b-1) сократим а, получим
(b+1) \ (b-1) .
3) х^2+2x-1≤0
найдем корни:
D=4-4=0; D=0, следовательно уравнение имеет смежные ("одинаковые" ) корни, найдем их по формуле
х1,2= -b\2a
х1,2 =-2\2=-1.
В это точке функция равна нулю.
Ветви параболы направлены вверх, схематично можно зарисовать и станет видно, что функция на всей своей протяженности >0, только в точке -1 равна нулю, это и будет ответом на вопрос.
ответ: х=1
4. Среднее арифметическое - сложить все и разделить на количество.
(22+24+28+30+32+18+21) /7 = 175/7=25.
Медиана - середина ряда данных, для того чтобы найти ее выпишем весь ряд данных по возрастанию:
18, 21, 22, 24, 28, 30, 32. Теперь попарно зачеркиваем бОльшее и Меньшее число, постепенно приближаясь к середине. Если там останется одно число - оно и будет медианой, если пара чисел - медианой будет их среднее арифметическое.
здесь медиана - 24.
Спрашивают. на сколько отличается ср.ар и медина. 25-24=1. ответ: 1
5. Странно, что это дают в ГИА, я такого в пробниках еще не встречал.
Зная что один из корней - множитель 75, подберем его и проверим.
х1=3, сделаем проверку.
(3^3)-3*(3^2) -25*3 + 75 = 81-81-75+75=0
Убедились, что один из корней равен трем.
теперь разделим весь этот многочлен на х-3 (на найденный корень), получим:
X^2-25=0
X^2=25
x=±5
Сомневаюсь, что это дадут в ГИА - это полноценный десятый класс.
х1=3, х2=-5, х3=5.
ответ: 3, -5, 5