1.1. Запишите в виде степени произведение: 1) 9.9.9.9.9.9.99 2) (-1,2):(-1,2):(-1,2):(-1,2)-(-1,2); 2 2 2 2 2 7 7 2 3) 4) b.b: b.b-b.b-b-b: b; 7 7 7 7 5) (t + k) - (t+k) - (t + k) : (t + k); х х х х х х . о 6) у у у уу у
Перед тем как выражать , нужно рассмотреть случаи, когда дробь положительная, а когда отрицательная:
Если такая дробь положительная, то при нахождении переменной знак неравенства меняться не будет (так как делим (умножаем) на положительное число):
Решим неравенство методом интервалов.
а) ОДЗ:
б) Нуль неравенства:
в) Решением данного неравенства будет .
При таких значениях параметра знак неравенства меняться не будет:
Если такая дробь отрицательная, то при нахождении переменной знак неравенства измениться на противоположный (так как делим (умножаем) на отрицательное число):
Решим неравенство методом интервалов. Решением данного неравенства будет .
При таких значениях параметра знак неравенства изменится:
ответ: если , то ; если , то ; если и , то неравенство не имеет решений.
3. Данная система неравенств решается в зависимости от значений параметра , поэтому:
1) Рассмотрим случай, когда решение неравенств пересекается:
Если , то есть , то в объединении с получаем при Если , то есть , то в объединении с получаем, что таких не существует, то есть такого варианта эта система не имеет.
2) Рассмотрим случай, когда решение неравенств не пересекается (когда система не имеет решений):
Оставшийся промежуток является решением этого варианта:
ответ: если , то ; если , то ; если , то система не имеет решений.
1. Решим первое неравенство этой системы:
ответ:
2. Дробь существует, если
Перед тем как выражать , нужно рассмотреть случаи, когда дробь положительная, а когда отрицательная:
Если такая дробь положительная, то при нахождении переменной знак неравенства меняться не будет (так как делим (умножаем) на положительное число):Решим неравенство методом интервалов.
а) ОДЗ:
б) Нуль неравенства:
в) Решением данного неравенства будет .
При таких значениях параметра знак неравенства меняться не будет:
Если такая дробь отрицательная, то при нахождении переменной знак неравенства измениться на противоположный (так как делим (умножаем) на отрицательное число):Решим неравенство методом интервалов. Решением данного неравенства будет .
При таких значениях параметра знак неравенства изменится:
ответ: если , то ; если , то ; если и , то неравенство не имеет решений.
3. Данная система неравенств решается в зависимости от значений параметра , поэтому:
1) Рассмотрим случай, когда решение неравенств пересекается:
Если , то есть , то в объединении с получаем при Если , то есть , то в объединении с получаем, что таких не существует, то есть такого варианта эта система не имеет.2) Рассмотрим случай, когда решение неравенств не пересекается (когда система не имеет решений):
Оставшийся промежуток является решением этого варианта:ответ: если , то ; если , то ; если , то система не имеет решений.
3
Объяснение:
остання цифра добутку (степені числа) залежить лише від добутку останньої цифри кожного з множників
тому остання цифра числа 987 в степені 987 така ж сама як і остання цифра числа 7 в степені 987
далі 7 =..7 (1 раз множник)
7*7=...9 (2 рази множник)
7*7*7=..3 ( 3 рази множник)
7*7*7*7=..1 ( 4 рази множник)
7*7*7*7*7=..7 ( 5 раз множник), а значить остання цифра степеней 7 буде повторюватися з періодом 4
987=4*246+3
7 в степені 987=7*7*7**7*7 (987 раз)=
(7*7*7*7) (246 раз) *7*7*7=(...1)(246 раз)*...3=...1*..3=...3
значить остання цифра 3