Пусть х км/ч - собственная скорость катера. Течение реки катеру, увеличивая его скорость, если бы катер плыл ПО течению! Тогда бы к скорости катера нужно было бы добавить скорость течения реки 2 км/ч! И наоборот, течение реки мешает катеру, если он плывет ПРОТИВ течения! Это значит, что скорость реки 2 км/ч нужно вычесть из скорости катера. По условию катер плывет ПРОТИВ течения реки, значит его скорость равна (х-2) км/ч! Катер плыл 3 часа против течения, значит, по формуле расстояния S=v*t имеем: скорость (х-2) нужно умножить на время 3 часа, получим: 3*(х-2) км - проплыл катер всего по реке. Далее, озеро не имеет течения, следовательно, катеру ничего не мешало, но и не двигаться, берем только собственную скорость катера х км/ч и по той же формуле умножаем на время, которое катер плыл по озеру, т.е. на 1 час, имеем расстояние, которое катер проплыл по озеру: х*1 км - проплыл катер всего по озеру По условию сказано, что ВСЕГО катер проплыл 72 км. Следовательно, нужно сложить расстояния, пройденные катером по реке 3*(х-2) и по озеру 1*х и приравнять к известному расстоянию 72 км. В результате имеем уравнение: 3*(х-2)+х=72 Раскрываем скобки и приводим подобные: 3*х-6+х=72 4*х-6=72 4*х=72+6 4*х=78 х=78/4 х=19,5 Так как мы изначально приняли за х собственную скорость катера, то его значение и есть ответ задачи. ответ: собственная скорость катера равна 19,5 км/ч.
1. значение выражения. 2.прямая. 3.равны и не параллельны 4.функция вида 5.формулой вида у=kх, где х-независимая переменная, к- не равное нулю. 6.множество, на котором задается функция. в каждой точке этого множества значение функции должно быть определено . ОДЗ 7. число, стоящее посередине упорядоченного по возростанию ряда чисел. если кол-во чисел в ряду чётное, то медианой ряда является полусумма двух стоящих посередине чисел. 8.число, которое встречается в данном ряду чаще других 9. разность между наибольшим и наименьшим из этих чисел. 10.от одной переменной можно привести к виду. кол-во решений зависит от параметров а и b. 11.найти множество всех его решений или доказать, что корней нет. 12.тождество 13. чтобы к сумме двух чисел прибавить третье число можно к первому числу прибавить сумму второго и третьего числа. а+b+c 14. верными и неверными
Течение реки катеру, увеличивая его скорость, если бы катер плыл ПО течению! Тогда бы к скорости катера нужно было бы добавить скорость течения реки 2 км/ч!
И наоборот, течение реки мешает катеру, если он плывет ПРОТИВ течения! Это значит, что скорость реки 2 км/ч нужно вычесть из скорости катера.
По условию катер плывет ПРОТИВ течения реки, значит его скорость равна (х-2) км/ч!
Катер плыл 3 часа против течения, значит, по формуле расстояния
S=v*t
имеем: скорость (х-2) нужно умножить на время 3 часа, получим:
3*(х-2) км - проплыл катер всего по реке.
Далее, озеро не имеет течения, следовательно, катеру ничего не мешало, но и не двигаться, берем только собственную скорость катера х км/ч и по той же формуле умножаем на время, которое катер плыл по озеру, т.е. на 1 час, имеем расстояние, которое катер проплыл по озеру:
х*1 км - проплыл катер всего по озеру
По условию сказано, что ВСЕГО катер проплыл 72 км. Следовательно, нужно сложить расстояния, пройденные катером по реке 3*(х-2) и по озеру 1*х и приравнять к известному расстоянию 72 км.
В результате имеем уравнение:
3*(х-2)+х=72
Раскрываем скобки и приводим подобные:
3*х-6+х=72
4*х-6=72
4*х=72+6
4*х=78
х=78/4
х=19,5
Так как мы изначально приняли за х собственную скорость катера, то его значение и есть ответ задачи.
ответ: собственная скорость катера равна 19,5 км/ч.
2.прямая.
3.равны и не параллельны
4.функция вида
5.формулой вида у=kх, где х-независимая переменная, к- не равное нулю.
6.множество, на котором задается функция. в каждой точке этого множества значение функции должно быть определено . ОДЗ
7. число, стоящее посередине упорядоченного по возростанию ряда чисел. если кол-во чисел в ряду чётное, то медианой ряда является полусумма двух стоящих посередине чисел.
8.число, которое встречается в данном ряду чаще других
9. разность между наибольшим и наименьшим из этих чисел.
10.от одной переменной можно привести к виду. кол-во решений зависит от параметров а и b.
11.найти множество всех его решений или доказать, что корней нет.
12.тождество
13. чтобы к сумме двух чисел прибавить третье число можно к первому числу прибавить сумму второго и третьего числа. а+b+c
14. верными и неверными