1.17 Функция у = f(х) задана следующим правилом: каждому неотри- цательному числу ставится в соответствие вторая цифра после
запятой в записи числа в виде бесконечной десятичной дроби,
Найдите:
a)f(1/4)
б)f(корень из 2)
В)f(1 1/6)
Г) f((корень из 5)^2)
Русская классика ? на 6к.>
Зарубежная классика ?
Всего 18к.
Объяснение:
1.Решение по действиям:
1) (18-6):2=6(к) зарубежная классика.
2)18-6=12(к) русская классика.
Зарубежная классика - 6 книг.
Русская классика - 12книг.
2.Решение задачи с
уравнения:
Пусть Ира прочитала х книг
зарубежной классики, тогда
русской классики она прочла
(х+6) книг. Всего за лето Ира
прочитала х+(х+6) книг, что по
условию задачи составляет
18 книг. Составим уравнение:
х+(х+6)=18
х+х+6=18
2х+6=18
2х=18-6
2х=12
х=12:2
х=6 книг зарубежной классики.
6+6=12 книг русской классики.
Зарубежная классика - 6 книг.
Русская классика - 12 книг.
ПРИМЕР №1. Найти остаток от деления уголком.
Решение. Делим первый элемент делимого на старший элемент делителя, помещаем результат под чертой
2.
x6 + 2x5 - x3 + x x4 - 4x + 2
x6 - 4x3 + 2x2 x2
2x5 + 3x3 - 2x2 + x
3.
x6 + 2x5 - x3 + x x4 - 4x + 2
x6 - 4x3 + 2x2 x2 + 2x
2x5 + 3x3 - 2x2 + x
2x5 - 8x2 + 4x
3x3 + 6x2 - 3x
Целая часть: x + 2
Остаток: 3x2 + 6x - 3
ПРИМЕР №2.. Разделить многочлены столбиком.
Решение. Делим первый элемент делимого на старший элемент делителя, помещаем результат под чертой
2.
x3 - 2x2 + x + 3 - 2x - 3
x3 + 3/2x2 - 1/2x2
- 7/2x2 + x + 3
3.
x3 - 2x2 + x + 3 - 2x - 3
x3 + 3/2x2 - 1/2x2 + 7/4x
- 7/2x2 + x + 3
- 7/2x2 - 21/4x
25/4x + 3
4.
x3 - 2x2 + x + 3 - 2x - 3
x3 + 3/2x2 - 1/2x2 + 7/4x - 25/8
- 7/2x2 + x + 3
- 7/2x2 - 21/4x
25/4x + 3
25/4x + 75/8
- 51/8
Целая часть: - 1/2x2 + 7/4x - 25/8
Остаток: - 51/8