Решение Чтобы избавиться от знака корня, возведем обе части во вторую степень и получим слева просто x+3, а справа сокращенное умножение квадрата суммы:
Приведем подобные члены и вычислим квадратное уравнение, приравняв результат к нулю:
График функции - парабола. Ветви вниз, так как коэффициент при .
Найдем корни квадратного уравнения:
Корни квадратного уравнения - точки пересечения с осью X. Так как условие неравенства - больше или равно, то интервал включает в себя значения корней уравнения. ответ: а) [-3;-2]
Решение
Чтобы избавиться от знака корня, возведем обе части во вторую степень и получим слева просто x+3, а справа сокращенное умножение квадрата суммы:
Приведем подобные члены и вычислим квадратное уравнение, приравняв результат к нулю:
График функции - парабола. Ветви вниз, так как коэффициент при .
Найдем корни квадратного уравнения:
Корни квадратного уравнения - точки пересечения с осью X.
Так как условие неравенства - больше или равно, то интервал включает в себя значения корней уравнения.
ответ: а) [-3;-2]
Решение.
Арифметический подход к решению.
1. 3600 · 1,485 = 5346 (т. р.) — размер вклада к концу третьего года хранения.
2. 3600 · 1,1 · 1,1 · 1,1 = 4791,6 (т. р.) — размер вклада к концу третьего года хранения, зависящего от первоначально внесенной суммы.
3. 5346 − 4791,6 = 554,4 (т. р.) составляют ежегодные дополнительно внесенные вклады, включая начисленные процентные надбавки.
4. Пусть одну часть из суммы 554,4 т. р. составляет дополнительно внесенная сумма в третий
год хранения вклада вместе с процентной надбавкой, начисленной на ту же сумму. Тогда 1,1 часть
составит размер дополнительно внесенной суммы во второй год хранения вклада с учетом процентной надбавки, начисленной дважды (два года подряд).
5. Всего 1+1,1 = 2,1 (части).
6. 554,4 : 2.1 = 264 (т.р.) — доля одной части от 554, 4 т. р. вместе с ежегодной процентной
надбавкой.
7. 264 : 1,1 = 240 (т. р.) — сумма, ежегодно добавленная к вкладу
это для примера а так сам делай