треугольник, образованный основанием и отрезками биссектрис от вершины до точки пересечения тоже равнобедренный. углы при основании в нем будут по 64:2=32 градуса. значит полный угол при основании в большем треугольнике 64 градуса. тогда при вершине 180-64*2=180-128=52 градуса
Если биссектрисы равных углов, то эти равные углы: 2*(180 - 100)/2 = 80. Углы: 80;80;20. Если же биссектрисы неравных углов, то если равные углы по x, то третий угол 180 - 2x. 180 - 100 = (180 -2x)/2 + x/2 = 90 - x/2; 80 = 90 - x/2; x = 20. Углы: 20,20,140. 2 решения
треугольник, образованный основанием и отрезками биссектрис от вершины до точки пересечения тоже равнобедренный. углы при основании в нем будут по 64:2=32 градуса. значит полный угол при основании в большем треугольнике 64 градуса. тогда при вершине 180-64*2=180-128=52 градуса
Если биссектрисы равных углов, то эти равные углы: 2*(180 - 100)/2 = 80. Углы: 80;80;20. Если же биссектрисы неравных углов, то если равные углы по x, то третий угол 180 - 2x. 180 - 100 = (180 -2x)/2 + x/2 = 90 - x/2; 80 = 90 - x/2; x = 20. Углы: 20,20,140. 2 решения
Объяснение:
Два решения вверху
1)
a) 6x^2-3x=0
3x(2x-1)=0
x=0; x=1/2
б)25x^2=1
x^2=1/25
x=±√1/25
x=1/5;x=-1/5
в)4x^2+7x-2=0
D=49+32=81
x=(-7±√81)/8
x=-2; x=1/4
г)4x^2+20x+25=0
D=400-400=0
X=-20/8
x= -5/2
д)3x^2+2x+1=0
D=4-12=-8<0
x∈∅
е)(x^2+5x)/2-3=0
(x^2+5x)/2=3
x^2+5x=6
x^2+5x-6=0
x=1; x=-6
2) x^4-29x^2+100=0
Замена:t=x^2, t>=0
t^2-29t+100=0
D=841-400=441=21^2
t=25; t =4
⇒x=±√25; x=±√4;
x=-5;x=5;x=-2;x=2
3)(3x^2+7x-6)/(4-9x^2)
Решим отдельно уравнение в числителе
3x^2+7x-6=0
D=49+72=121=11^2
x=-3;
x=2/3
⇒3x^2+7x-6=(x+3)(3x-2)
(x+3)(3x-2)/(2-3x)(2+3x) = -(x+3)/(2+3x)
4) x^2-26x+q=0
По теореме Виета
x1+x2=26
12+x2=26
x2=14
x1*x2=q
14*12=q
q=168