1.
а)у в 8 степени умножить на у в 12 и поделить на у в 6.
б)(b в 3 степени)в 5 степени умножить на b в 11
в) b в 14 умножить на c умножить на b во 2 степени, поделить на (d в 7 степени, умножить на c) во 2 степени
2. представьте в виде одночлена стандартного вида и найдите его степень:
а) -у во 2 степени умножить на 40z, умножить на (-0,25) умножить на z в 3, умножить на у.
б) (-8bво 2 степени) умножить на (-12,5b) умножить на (с в 5 степени) в 3 степени.
3. :
а) (2m во 2 степени умножить на n) в 3 степени умножить на (-5m в 3 степени умножить на n умножить на k во 2 степени) во 2 степени.
б) 1 умножить на ((-0,1x в 3 степени умножить на у в 4)умножить на 2)умножить на 3.
в) ((-1 пятая умножить на m во 2 степени умножить на n) во 2 степени умножить на 5 умножить на m умножить на p в 3 степени.
бъяснение:
16,2; 18,4; 17,2; 18,6; 15,9; 16,5; 18,1; 18,7; 16,6; 17,8.
1. Поиск среднего арифметического результатов.
Воспользуемся формулой для поиска среднего арифметического:
2. Составление интервальной таблицы.
Для удобства упорядочим вариационный ряд:
15,9; 16,2; 16,5; 16,6; 17,2; 17,8; 18,1; 18,4; 18,6; 18,7.
Найдём размах вариации (разность наибольшего и наименьшего значений):
18,7 - 15,9 = 2,8
Найдём количество интервалов для таблицы:
2,8 : 0,5 = 5,6 ≈ 6 интервалов.
Так как длина всех интервалов (6 * 0,5) больше, чем размах на 0,2, то от минимального значения надо отступить половины "перебора", то есть:
15,9 - 0,1 = 15,8
Это будет началом первого интервала из таблицы.
Шаг указан, поэтому следующие интервалы будут получаться откладыванием ("прибавлением") 0,5. Получим следующие интервалы:
[15,8; 16,3), [16,3; 16,8); [16,8, 17,3); [17,3; 17,8); [17,8; 18,3); [18,3; 18,8).
Обращаем внимание, что к последнему значению прибавляется половина "перебора". Так как 18,7 + 0,1 = 18,8, то можно считать, что интервалы посчитаны верно.
Теперь распределяем значения вариационного ряда по заданным интервалам (количество значений в каждом интервале -- это :
[15,8; 16,3) -- 15,9; 16,2,
[16,3; 16,8) -- 16,5; 16,6;
[16,8, 17,3) -- 17,2;
[17,3; 17,8) -- нет значений;
[17,8; 18,3) -- 17,8; 18,1;
[18,3; 18,8) -- 18,4; 18,6; 18,7.
Проверяем, все ли значения учли 2 + 2 + 1 + 0 + 2 + 3 = 10.
Подсчитав количество значений в каждом интервале, найдём относительные частоты.
Получим:
* Если сложить все частоты, то должна получится единица (для самопроверки).
** Иногда рассчитывают середины этих интервалов (сумма концов интервала, делённая пополам)
Таблица во вложении:
Объяснение:
ответ: 12p^4 - 11p^3 + 54p^2 + 10p - 25.
Объяснение:
1. Выполним умножение: каждое слагаемое первого трехчлена поочередно умножим на каждое слагаемое второго трехчлена, результаты сложим, учитывая знаки.
(p^2 − p + 5)(12p^2 + p − 5) = p^2 × 12p^2 + p^2 × p - p^2 × 5 - p × 12p^2 - p × p + p × 5 + 5 × 12p^2 + 5 × p - 5 × 5 = 12p^4 + p^3 - 5p^2 - 12p^3 - p^2 +5p + 60p^2 + 5p - 25 = 12p^4 - 11p^3 + 54p^2 + 10p - 25.
2. Приведем подобные слагаемые, поочередно сложив коэффициенты переменных одной степени.