1 Дано квадратное уравнение 3х +х – 4 = (0) а) определите вид квадратного уравнения б) выпишите старший коэффициент, второй коэффициент, свободный член, в) определи сколько корней имеет данное уравнение.
Примечание. Используя квадратный трехчлен любой из данных квадратичных функций, можно очень быстро составить задания для решения квадратных уравнений и квадратных неравенств, причем все они будут иметь целочисленные («хорошие») корни.
Приведем пример составления уравнений и неравенств для квадратного трехчлена x2 – 6x + 5, данного в формуле 7.
График - парабола ветвями вниз (по коэффициенту-1 при х²), Надо рассчитать значения функции при разных значениях аргумента: х -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 у -48 -35 -24 -15 -8 -3 0 1 0 -3 -8 -15 -24 -35 -48, нанести эти точки на графике и соединить линией. График пересекает ось Y, когда x равняется 0: подставляем x=0 в -x^2+6*x-8. Результат: y=-8. Точка: (0, -8) График функции пересекает ось X при y=0, значит нам надо решить уравнение:-x^2+6*x-8 = 0 Решаем это уравнение и его корни будут точками пересечения с X: x=2. Точка: (2, 0)x=4. Точка: (4, 0)Экстремумы функции:Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:y'=-2*x + 6=0 Решаем это уравнение и его корни будут экстремумами:x=3. Точка: (3, 1)Интервалы возрастания и убывания функции:Найдем интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим на ведет себя функция в экстремумах при малейшем отклонении от экстремума:Минимумов у функции нетуМаксимумы функции в точках:3Возрастает на промежутках: (-oo, 3]Убывает на промежутках: [3, oo)Точки перегибов графика функции:Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции, + нужно подсчитать пределы y'' при аргументе, стремящемся к точкам неопределенности функции:y''=-2=0 Решаем это уравнение и его корни будут точками, где у графика перегибы: Нет решение уравнения. Вертикальные асимптоты графика функции:Горизонтальную асимптоту найдем с предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим:lim -x^2+6*x-8, x->+oo = -oo, значит горизонтальной асимптоты справа не существуетlim -x^2+6*x-8, x->-oo = -oo, значит горизонтальной асимптоты слева не существуетНаклонные асимптоты графика функции:Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы:lim -x^2+6*x-8/x, x->+oo = -oo, значит наклонной асимптоты справа не существуетlim -x^2+6*x-8/x, x->-oo = oo, значит наклонной асимптоты слева не существуетЧетность и нечетность функции:Проверим функци четна или нечетна с соотношений f(x)=f(-x) и f(x)=-f(x). Итак, проверяем:-x^2+6*x-8 = -x^2 - 6*x - 8 - Нет-x^2+6*x-8 = -(-x^2 - 6*x - 8) - Нетзначит, функция не является ни четной ни нечетной
Вариант 1
1. y = x2 – 4x
2. y = – 2x2 + 4x + 6
3. y = – 0,5x2 – 3x – 2,5.
4. y = 0,25x2 + 3x + 5.
Вариант 2
1. y = x2 + 6x.
2. y = – 3x2 – 12x – 9.
3. y = 0,25x2 – x – 7,5.
4. y = – 0,25x2 + 2x + 5.
Вариант 3
1. y = – x2 + 2x + 8.
2. y = 2x2 – 12x + 10.
3. y = – 0,5x2 – 2x.
4. y = 0,25x2 + 2x – 5.
Вариант 4
1. y = – x2 + 6x – 8.
2. y = 3x2 + 12x + 9.
3. y = 0,5x2 – 4x.
4. y = – 0,25x2 – 3x – 5.
Вариант 5
1. y = x2 + 8x + 12.
2. y = – 2x2 + 8x.
3. y = 0,5x2 – x – 1,5.
4. y = – 0,25x2 – x + 3.
Вариант 6
1. y = x2 + 6x + 8.
2. y = – 3x2 + 6x.
3. y = 0,5x2 – 2x – 6.
4. y = – 0,25x2 – 2x + 5.
Вариант 7
1. y = x2 – 8x + 7.
2. y = – 2x2 – 12x – 10.
3. y = 0,5x2 + 2x.
4. y = – 0,25x2 + 3x – 8.
Вариант 8
1. y = x2 – 2x – 3.
2. y = – 2x2 + 8x – 6.
3. y = 0,5x2 + 4x + 6.
4. y = – 0,25x2 – 3x.
Вариант 9
1. y = – x2 – 4x + 5.
2. y = 2x2 – 4x – 6.
3. y = 0,5x2 + 3x + 2,5.
4. y = – 0,25x2 + 2x.
Вариант 10
1. y = – x2 – 2x + 8.
2. y = 2x2 + 8x + 6.
3. y = – 0,5x2 + 3x – 2,5.
4. y = 0,25x2 – 3x.
Вариант 11
1. y = – x2 + 4x.
2. y = 2x2 + 4x – 6.
3. y = – 0,5x2 – 3x + 3,5.
4. y = 0,25x2 – 2x – 5.
Вариант 12
1. y = x2 + 2x – 3.
2. y = – 2x2 – 8x.
3. y = – 0,5x2 + 3x + 3,5.
4. y = 0,25x2 – x – 8.
Вариант 13
1. y = – x2 – 6x.
2. y = 2x2 – 8x + 6.
3. y = – 0,5x2 + 4x – 6.
4. y = 0,25x2 + 3x + 8.
Вариант 14
1. y = – x2 – 4x – 3.
2. y = – 2x2 + 12x – 10.
3. y = 0,5x2 + x – 7,5.
4. y = 0,25x2 – 2x.
Вариант 15
1. y = – x2 + 6x – 5.
2. y = – 2x2 – 8x – 6.
3. y = 0,5x2 + 4x.
4. y = 0,25x2 – 3x + 8.
Вариант 16
1. y = – x2 – 2x.
2. y = – 3x2 + 12x – 9.
3. y = 0,5x2 – 3x – 3,5.
4. y = 0,25x2 + 2x + 3.
Вариант 17
1. y = – x2 + 4x – 3.
2. y = 2x2 – 4x.
3. y = 0,5x2 + 3x – 3,5.
4. y = – 0,25x2 – 2x – 3.
Вариант 18
1. y = x2 – 4x + 3.
2. y = 2x2 + 12x + 10.
3. y = – 0,5x2 – 4x.
4. y = – 0,25x2 + 3x – 5.
Вариант 19
1. y = x2 – 6x + 8.
2. y = – 2x2 – 4x + 6.
3. y = – 0,5x2 + 2x + 6.
4. y = 0,25x2 + 2x.
Вариант 20
1. y = x2 + 8x + 7.
2. y = 2x2 – 8x.
3. y = – 0,5x2 + x + 1,5.
4. y = – 0,25x2 – 3x – 8.
Примечание. Используя квадратный трехчлен любой из данных квадратичных функций, можно очень быстро составить задания для решения квадратных уравнений и квадратных неравенств, причем все они будут иметь целочисленные («хорошие») корни.
Приведем пример составления уравнений и неравенств для квадратного трехчлена x2 – 6x + 5, данного в формуле 7.
1) x2 – 6x + 5 = 0 (или – x2 + 6x – 5 = 0);
2) x2 + 6x + 5 = 0 (или – x2 – 6x – 5 = 0).
Всего можно составить 40 различных уравнений.
3) x2 – 6x + 5 < 0 (или – x2 + 6x – 5 > 0);
4) x2 – 6x + 5 > 0 (или – x2 + 6x – 5 < 0);
5) x2 – 6x + 5 Ј 0 (или – x2 + 6x – 5 і 0);
6) x2 – 6x + 5 і 0 (или – x2 + 6x – 5 Ј 0);
7) x2 + 6x + 5 < 0 (или – x2 – 6x – 5 > 0);
8) x2 + 6x + 5 > 0 (или – x2 – 6x – 5 < 0);
9) x2 + 6x + 5 Ј 0 (или – x2 – 6x – 5 і 0);
10) x2 + 6x + 5 і 0 (или – x2 – 6x – 5 Ј 0).
Всего можно составить 160 различных неравенств.
.
Надо рассчитать значения функции при разных значениях аргумента:
х -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
у -48 -35 -24 -15 -8 -3 0 1 0 -3 -8 -15 -24 -35 -48,
нанести эти точки на графике и соединить линией.
График пересекает ось Y, когда x равняется 0: подставляем x=0 в -x^2+6*x-8.
Результат: y=-8. Точка: (0, -8)
График функции пересекает ось X при y=0, значит нам надо решить уравнение:-x^2+6*x-8 = 0 Решаем это уравнение и его корни будут точками пересечения с X:
x=2. Точка: (2, 0)x=4. Точка: (4, 0)Экстремумы функции:Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:y'=-2*x + 6=0
Решаем это уравнение и его корни будут экстремумами:x=3. Точка: (3, 1)Интервалы возрастания и убывания функции:Найдем интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим на ведет себя функция в экстремумах при малейшем отклонении от экстремума:Минимумов у функции нетуМаксимумы функции в точках:3Возрастает на промежутках: (-oo, 3]Убывает на промежутках: [3, oo)Точки перегибов графика функции:Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции,
+ нужно подсчитать пределы y'' при аргументе, стремящемся к точкам неопределенности функции:y''=-2=0
Решаем это уравнение и его корни будут точками, где у графика перегибы: Нет решение уравнения. Вертикальные асимптоты графика функции:Горизонтальную асимптоту найдем с предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим:lim -x^2+6*x-8, x->+oo = -oo, значит горизонтальной асимптоты справа не существуетlim -x^2+6*x-8, x->-oo = -oo, значит горизонтальной асимптоты слева не существуетНаклонные асимптоты графика функции:Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы:lim -x^2+6*x-8/x, x->+oo = -oo, значит наклонной асимптоты справа не существуетlim -x^2+6*x-8/x, x->-oo = oo, значит наклонной асимптоты слева не существуетЧетность и нечетность функции:Проверим функци четна или нечетна с соотношений f(x)=f(-x) и f(x)=-f(x). Итак, проверяем:-x^2+6*x-8 = -x^2 - 6*x - 8 - Нет-x^2+6*x-8 = -(-x^2 - 6*x - 8) - Нетзначит, функция не является ни четной ни нечетной