1. Даны координаты вектора и конечной точки этого вектора. Определи координаты начальной точки вектора. AB−→−{−3;2}. B(2;−8); А(;) 2. Даны координаты вектора и начальной точки этого вектора. Определи координаты конечной точки вектора.
MN−→−{2;2}.
M(4;−7); N(;).
2) х=2у+2
2у=х-2
у=х/2-1 Угловой коэфф. к=1/2
3) -5х+3у+16=0
3у=5х-16
у=5х/3-16/3 Угловой коэфф. k=5/3
№ 3.
1) (х-3)²+(у-1)²=9
(х-3)²+(у-1)²=3² Графиком будет окружность с радиусом 3 с центром в точке с координатами (3; 1)
2) у=(х-2)²-1 у=х²-4х+4-1 у=х²-4х+3
График функции - парабола, ветви направлены вверх ( а>0) Нули функции х1=1 и х2=3. (Точки пересечения с осью ОХ)
При х =0, у=3 - точка пересечения с осью ОУ
3) у=х²-2
График - парабола ветвями вверх. При х=0, у=-2.
приводим к функциям:
1) y=-x^2+4
график - парабола, ветви вниз
вершина:
(0;4)
найдем нули:
y=0; x^2=4; x1=2; x2=-2
(2;0), (-2;0)
Чтобы построить график этой функции, берем график y=-x^2 и сдвигаем его на 4 точки вверх по оси y, получим y=-x^2+4
и также этот график будет проходить через вышеуказанные точки.
2) y=x+2
линейная функция, для построения графика нужны 2 точки
x=0; y=2; (0;2)
y=0; x=-2; (-2;0)
график в приложении:
функция 1 - красным цветом, 2 - синим цветом
они пересекаются в точках (-2;0) и (1;3) - это и есть решения системы.
ответ: (-2;0), (1;3)