1. Даны векторы а{4;−1;−2} и ⃗б{2;5;13}. Найдите координаты вектора с=а+б. 2. Даны векторы а {3; 0; 2}, б {−1;5;0}, и с {1;−2;0}. Найдите координаты вектора р=1/4∙а−2∙б+с.
3. Найдите значения m и n , при которых векторы а{1;m;−1} и б{ n;−4;3} коллинеарны.
Нужны решения
56 мин=56\60 часа.
Пусть первый велосипедист был в пути t часов до встречи.
Второй ехал t и ещё 56/60 часа, когда первый стоял.
Формула пути S=vt (v -скорость, t-время)
До встречи первый проехал S₁= 20•t км, второй S₂=30•(t+56/60)
Расстояние между городами равно 93 км.
S₁+S₂=93 км
20t +30•(t+56/60)=93
20t+30t+30•56/60=93
50t=93-28
t=65:50
t=1,3 ( часа) - время, которое был в пути первый велосипедист.
За это время он проехал
20•1,3=26 (км)
Второй велосипедист проехал остальное расстояние между городами:
93-26=67 км - на таком расстоянии от второго города произошла встреча.
Объяснение:
Пусть они выехали в x час.
Значит, они ехали (16 -x) час. со скоростью v км/час, проехав расстояние
s = v*(16-x) км.
Если бы скорость была на 25% больше, т.е. 1,25v, то они ехали бы (14,5-x) час., проехав то же расстояние s = 1,25v*(14,5-x).
Приравняем правые части в выражениях для s.
v*(16-x) = 1,25v*(14,5-x)
Решим относительно x, предварительно сократив v.
16-x = 1,25*(14,5-x)
16-x = 18,125 - 1,25x
1,25x -x=18,125-16
0,25x = 2,125
x= 2,125/0,25
x =8,5
ответ: выехали из дома в 8 ч. 30 мин.