№ 1. Доведіть, що вираз ділиться на дане число при будь-якому цілому значенні п: 1) (п + 2)2 – п(п – 2) + 2на 6; 2) (2п + 1)(2п – 1) – (п + 1)2 – п –1ділиться на 3.
№ 2. Доведіть, що значення виразу ділиться на дане число:
1) 4012 – 1992 на 600; 2) 583 + 423 на 100; 3) 853 – 483 на 37; 4) 733 + 731 на 50.
угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀)
1) найдем производную:
y'(x)=(x²+4)'=2x
k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1
2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е.
y'(x₀)=k
2*x₀=4
x₀=2
чтобы найти ординату точки, подставим x₀ в функцию y(x):
y₀=y(x₀)=2²+4=4+4=8
(2;4) - координаты точки, в которой угловой коэффициент касания равен k=4
3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀)
x₀=1, y'(x₀)=2 - найдено выше под 1)
y(x₀)=1²+4=5
подставляем найденные значения в общий вид:
f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1
Объяснение:
1) Підставляємо замість х 12 (бо це абсцисса) у формулу
12^2 + y^2 = 169
y^2 = 169-12^2
y^2 = 13^2-12^2
y^2 = (13-12)(13+12)
у^2=25
у1= -5
у2=5
Отже, точки (12;-5) і (12; 5)
2)Аналогічно замість у підставимо -5
x^2 + (-5)^2 = 169
x^2 + 25= 169
x^2 = 169-25
х^2=144
х1=12
х2= -12
Отже, точки (12; -5) і (-12; -5)
3)На осі абсцисс лежать ті точки, що мають у=0
Тож, необхідно підставити на місце у нуль
x^2 + 0^2 = 169
х^2=169
х1= -13
х2=13
Отже, точки (-13,0) та (13;0)
4) Якщо точка лежить на осі ординат, то її абсцисса дорівнює нулю
у^2=169
у1= -13
у2=13
Отже, відповідь: (0;-13) і (0;13)