1. Функция задана формулой f(x) = 2x²- 3x. Найти: 1) f(2) u f(-3); 2) нули функции.
2. Построить график функции у=х² - 2х - 3.
Используя график, найти:
1) область значений функции;
2) промежуток убывания функции;
3) значения х, при которых у<0.
3. Постройте график функции:
1) у=√х + 3; 2) у=√(х+3).
4. Найти область определения функции у =(х-5)/(х²+х-6) .
5. При каких значениях p и с вершины параболы у = x^2+ pх + с находится в точке А ( -4 ; 6 )
Tv-Ta= 7:28
НАЙТИ: Va=?
Пишем два уравнения.
1) Vv= Va- 48 - путь за 1 час - это скорость в км/час.
Переводим время 7:28 в часы - 7+28/60 = 7 7/15 час. = 112/15 час.
2) S/Vv - S/Va =112/15 - время обгона велосипедиста
Приводим к общему знаменателю 2) подставив путь = 112 км.
112*Va - 112*Va +112*48 = Va*(Va-48)*(112/15)
V^2 - 48*V = 48*15 = 720
Решаем квадратное уравнение и получаем корни
Va= 60 км/час. и -12, которое нам не подходит.
Из уравнения 1)
Vv = Va-48 = 12 км/час
x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.