1) на отрезке [0;3] функция y=x³-4 возрастает, поэтому наименьшее значение она принимает при x=0, и оно равно 0-4=-4, а наибольшее - при x=3, и оно равно 3³-4=23.
2) перепишем функцию в виде y=-3x-1. Эта функция убывает на всей числовой оси, поэтому Ymax=y(-2)=5 и Ymin=y(0)=-1.
3) Функция убывает на промежутке [π/3;π/2) и возрастает на промежутке (π/2;5*π/6]. При этом y(π/3)=1-√3<y(5*π/6)=0, поэтому Ymax=y(5*π/6)=0, а Ymin=y(π/2)=-1
4) На промежутке [0;π/2] функция y=1+sin(x), а вместе с ней и функция y1=√(1+sin(x)) возрастают. Поэтому Ymin=y1(0)=1, а Ymax=y1(π/2)=√(1+1)=√2
2) перепишем функцию в виде y=-3x-1. Эта функция убывает на всей числовой оси, поэтому Ymax=y(-2)=5 и Ymin=y(0)=-1.
3) Функция убывает на промежутке [π/3;π/2) и возрастает на промежутке (π/2;5*π/6]. При этом y(π/3)=1-√3<y(5*π/6)=0, поэтому Ymax=y(5*π/6)=0, а Ymin=y(π/2)=-1
4) На промежутке [0;π/2] функция y=1+sin(x), а вместе с ней и функция y1=√(1+sin(x)) возрастают. Поэтому Ymin=y1(0)=1, а Ymax=y1(π/2)=√(1+1)=√2
а) {x-y-1=0
{x+y-5=0
х=1+у
1+у+у-5=0
2у=4
у=2
х=1+у=1+2
х=3
{x-y-2=0
{x+y-6=0
х=6-у
6-у-у-2=0
-2у=-4
у=2
х=6-у=6-2
х=4
в) {x-y-2=0
{3x-2y-9=0
х=2+у
3(2+у)-2у-9=0
6+3у-2у-9=0
у=3
х=2+у=2+3
х=5
г) {x-2y-3=0
{5x+y-4=0
х=3+2у
5x+y-4=0
5(3+2у)+у-4=0
15+10у+у-4=0
11у=-11
у=-1
х=3+2у=3+2(-1)=3-2
х=1
{x+2y-11=0
{4x-5y+8=0
х=11-2у
4х-5у+8=0
4(11-2у)-5у+8=0
44-8у-5у+8=0
-13у=52
у=-4
х=11-2у=11-2(-4)=11+8
х=19
{x+4y-2=0
{3x+8y-2=0
х=2-4у
3(2-4у)+8у-2=0
6-12у+8у-2=0
-4у=-4
у=1
х=2-4у=2-4*1=2-4
х=-2