Найдем ее минимальное и максимальное значения на промежутке [-2; 7].
Порядок решения такой - для начала найдем критические точки функции, и затем сравним значения функции от критического аргумента и границ промежутка - этого будет достаточно.
Находим производную функции:
y' = 2 * x - 6;
y' = 0;
x = 3 - критическая функция. Находим значения функции:
ответ:1-oе фото
1)x²-2x-35 2)3x²+16x+5 3)x²-13x+40
x²-2x-35=0 3x²+16x+5=0 x²-13x+40=0
D=4+4*35=144 D=256-4*3*5=196 D=169-4*40=9
x1=(2+12):2=7 x1=(-16+14):6=5 x1=(13+3):2=8
x2=(2-12):2=-5 x2=(-16-14):6=0,3333333 x2=(13-3):2=5
4)6x²+x-1
6x²+x-1=0
D=1+4*6*1=25
x1=(-1+5):12=0,3333333
x2=(-1-5):12=-0,5
y = x^2 - 6 * x - 13.
Найдем ее минимальное и максимальное значения на промежутке [-2; 7].
Порядок решения такой - для начала найдем критические точки функции, и затем сравним значения функции от критического аргумента и границ промежутка - этого будет достаточно.
Находим производную функции:
y' = 2 * x - 6;
y' = 0;
x = 3 - критическая функция. Находим значения функции:
y(-2) = 4 + 12 - 13 = 3;
y(3) = 9 - 18 - 13 = -22;
y(7) = 49 - 42 - 13 = -6.
Получаем, что:
Минимальное значение функции на промежутке - -22.
Максимальное значение функции на промежутке - 3.