Объяснение:
а) х=2 это вертикальная асимптота. Это точка разрыва, т. е. это будет та точка, в которой знаменатель равен 0, т.к. на 0 делить нельзя. Следовательно
2·2+b=0; b=-4
y=3 - это горизонтальная асимптота. К этому значению стремится предел функции. Тогда
Применяя правило Лопиталя, будем иметь
b)
i)
Как видим, к требуемому виду функция не приводится, т.к. 3≠-2
ii) В точках пересечения с осью у абцисса равна 0. Подставляем в уравнение, находим у:
A(0;-2.75) - точка пересечения с осью у
В точках пересечения с осью х ордината равна 0. Решаем уравнение
- точка пересечения с осью х.
iii) Дополнительно исследуем функцию в точке разрыва
Схематически строим график
Объяснение:
а) х=2 это вертикальная асимптота. Это точка разрыва, т. е. это будет та точка, в которой знаменатель равен 0, т.к. на 0 делить нельзя. Следовательно
2·2+b=0; b=-4
y=3 - это горизонтальная асимптота. К этому значению стремится предел функции. Тогда
Применяя правило Лопиталя, будем иметь
b)
i)
Как видим, к требуемому виду функция не приводится, т.к. 3≠-2
ii) В точках пересечения с осью у абцисса равна 0. Подставляем в уравнение, находим у:
A(0;-2.75) - точка пересечения с осью у
В точках пересечения с осью х ордината равна 0. Решаем уравнение
- точка пересечения с осью х.
iii) Дополнительно исследуем функцию в точке разрыва
Схематически строим график
log a (a^2/b) log a (a^2) - log a (b)
5log (b^2)/a (a^2/b)= 5· = 5· =
log a (b^2)/a log a (b^2)-log a (a)
2- 3 (-1)
= 5 = 5 = -1
2·3 -1 5
2) log 2 (a^1/3) , если log 4 (a^3)=9
log 4 (a^3)=9 ⇔3 log 4 (a)=9 ⇔ log 4 (a)=3
log 4 (a^1/3) (1/3)log 4 (a) 1log 2 (a^1/3) = = = = 2
log 4 (2) log 4 (√4) 1/2
3) lg2.5 если log 4(125) = a
log 4(125) = a ⇔ log 4(5³) =3 log 4(5) =a ⇔ log 4(5)=a/3
log 4 (5/2) log 4 (5)-log 4 (2) a/3-1/2 2a-3lg2.5 = = = =
log 4 (5·2) log 4 (5) +log 4 (2) a/3 +1/2 2a+3