1)Какую работу надо произвести при перемещении тележки на промежутке от 1 до 2 метров под действием силы, заданной законом: F(x) = x2+3 2)Вычислить электрический заряд, переносимый за интервал времени от 1 до 2 секунд проходящий через поперечное сечение проводника, если сила тока меняется по закону: i(t) = t2-t+1
3)Скорость движения капли в водопаде u=9t^2-8t м/с. Найти путь, пройденный каплей за 4-ю секунду.
4)Ракета запущена вертикально вверх с поверхности земли со скоростью v=(39,2-9,8t)м/с. Найти наибольшую высоту подъему данной ракеты.
2) ( 3x + 3y) - bx - by = 3(x + y) - b(x + y) = (x+y)(3 - b)
3) (4n - 4) + ( c - nc) = 4( n - 1) + c( 1 - n) = (4 - c)(n - 1)
4) ( x⁷ + x³) - 4x⁴ - 4 = x³(x⁴ + 1) - 4( x⁴ + 1) = (x⁴+1)( x³ - 4)
5) (6mn - 3m) + ( 2n - 1) = 3m( 2n - 1) + ( 2n - 1)=(2n - 1)(3m + 1)
6) (4a⁴ - 8a) +(10y - 5ya³) = 4a(a³ - 2) + 5y(2 - a³) = (4a - 5y)(a³ - 2)
7) a²b² - a + ab² - 1 = (a²b² + ab²) - (a + 1) = ab²(a + 1) - (a+1)=(a+1)(ab² - 1)
8) (xa - xb²) + (zb² - za) - ya + yb² = x(a-b²)+z(b² -a) - y(a -b²)=(x - z - y)(a - b²)
По условиям задачи для экзамена подготовили билеты с номерами от 1 до 50.
Однозначные номера: 1, 2, 3, 4, 5, 6, 7, 8, 9.
Всего 9. Значит, число благоприятных исходов события, при котором взятый учеником билет имеет однозначный номер m=9.
Число всех возможных исходов n=50.
Тогда вероятность равна: Р=m÷n=9÷50= 0,18
ответ: вероятность того, что наугад взятый учеником билет имеет однозначный номер равна 0,18 (18%).