1. Могут ли sin, cos, tg и ctg быть равны 6/7, √3, - 1/2, -5,1 2. Возможен ли угол , удовлетворяющий следующим соотношениям?
a) sin = 8/17 и cos =15/17 b) tg = 3/5 и ctg = 5/4
3. Вычисли значение заданного выражения
a) 2sin45º - 4 cos30º b) 7 tg30º·ctg30º
4. Какой знак у выражения:
sin73º cos112º tg191º ctg287º
ОЧЕНЬ НАД МОЛ
(х + 35) - скорость автомобилиста
2 ч 48 мин = 2,8 час
60 / х - 60 / (х + 35) = 2,8
60 * (х + 35) - 60 * х = 2,8 *(х + 35) * х
60х + 2100 - 60х = 2,8х^2 +98x
2.8x^2 +98x - 2100 = 0
x^2 + 35x - 750 = 0 Найдем дискриминант D Квадратного уравнения
D = 35^2 - 4 * 1 * (- 750) = 1225 + 3000 = 4225 ; sqrt 4225 = 65
Найдем корни уравнения : 1 - ый = (- 35 + 65) / 2 * 1 = 30/2 = 15
2 - ой = (- 35 - 65) / 2 = - 100 / 2 = - 50 . Скорость не может быть меньше 0 , поэтому подходит 1 - ый корень , Скорость велосипедиста равна 15 км/ч
По трём точкам А, В и С составим уравнение плоскости.
Для составления уравнения плоскости используем формулу:
x - xA y - yA z - zA
xB - xA yB - yA zB - zA
xC - xA yC - yA zC - zA = 0
Подставим данные и упростим выражение:
x - 1 y - 2 z - (-1)
0 - 1 1 - 2 5 - (-1)
(-1) - 1 2 - 2 1 - (-1) = 0
x - 1 y - 2 z - (-1)
-1 -1 6
-2 0 2 = 0
(x - 1) (-1·2-6·0) - (y - 2) ( (-1)·2-6·(-2)) + (z - (-1)) ((-1)·0-(-1)·(-2)) = 0
(-2) (x - 1) + (-10) (y - 2) + (-2)(z - (-1)) = 0
- 2x - 10y - 2z + 20 = 0 или, сократив на (-2):
x + 5y + z - 10 = 0.
Теперь подставим в полученное уравнение координаты точки Д.
Если уравнение превратится в тождество - то точка принадлежит плоскости вместе с точкам А. В и С.
Д(2;1;3)
2 + 5*1 + 3 - 10 = 0.
0=0.
ответ: точка Д принадлежит плоскости.