1 . Найдите сумму бесконечной геометрической прогрессии с первым членом 2,5 и знаменателем -1/2. 2. В арифметической прогрессии a5= -145, a6= -130 Найдите номер первого положительного элемента этой последовательности.
Строишь график функции y = 3x² и сдвигаешь его на 2,5 единичных отрезка влево. (Ты вообще можешь сразу провести пунктиром линию x = 2,5 (это вертикальная линия, которая пересекается с осью Оx в точке 2,5) и строить свой график, как будто твой пунктир - это ось Оy). График y = 3x² строится как зауженная парабола, проходящая через точки (0; 0), (1; 3), (2; 12), (-1; 3), (-2; 12). Окончательный график (ну, тот, который и надо было построить) будет проходить через точки, у которых вторая координата, т.е. y, будет такая же, как у графика y = 3x², а первую, т.е. x, каждый раз надо уменьшать на 2,5. Т.е. это будут точки (-2,5; 0), (-1,5; 3), (-0,5; 12), (-3,5; 3), (-4,5; 12).
Представим множество возможных исходов как квадрат 60x60 на плоскости Oxy (0 <= x <= 60, 0 <= y <= 60), x - время, в которое на встречу пришел один человек, y - другой. "Отметим" на нем множество благоприятных исходов, когда встреча состоялась: ему соответствует область, для которой выполняется условие |x - y| <= 18 (они пришли на место встречи с разницей во времени <= 18 минут). Границы области - прямые y = x + 18 и y = x - 18. Отношение площади фигуры, ограниченной этими прямыми, ко всей площади квадрата - и есть вероятность удачной встречи. Площадь фигуры удобно искать, вычитая из площади квадрата площади треугольников в левом-верхнем и правом-нижнем углах. 60^2 - 1/2 (60-18)^2 - 1/2 (60-18)^2 = 3600 - 1764 = 1836 Искомая вероятность = 1836 / 3600 = 0,51
График y = 3x² строится как зауженная парабола, проходящая через точки (0; 0), (1; 3), (2; 12), (-1; 3), (-2; 12).
Окончательный график (ну, тот, который и надо было построить) будет проходить через точки, у которых вторая координата, т.е. y, будет такая же, как у графика y = 3x², а первую, т.е. x, каждый раз надо уменьшать на 2,5. Т.е. это будут точки (-2,5; 0), (-1,5; 3), (-0,5; 12), (-3,5; 3), (-4,5; 12).
Представим множество возможных исходов как квадрат 60x60 на плоскости Oxy (0 <= x <= 60, 0 <= y <= 60), x - время, в которое на встречу пришел один человек, y - другой. "Отметим" на нем множество благоприятных исходов, когда встреча состоялась: ему соответствует область, для которой выполняется условие |x - y| <= 18 (они пришли на место встречи с разницей во времени <= 18 минут).
Границы области - прямые y = x + 18 и y = x - 18. Отношение площади фигуры, ограниченной этими прямыми, ко всей площади квадрата - и есть вероятность удачной встречи.
Площадь фигуры удобно искать, вычитая из площади квадрата площади треугольников в левом-верхнем и правом-нижнем углах.
60^2 - 1/2 (60-18)^2 - 1/2 (60-18)^2 = 3600 - 1764 = 1836
Искомая вероятность = 1836 / 3600 = 0,51