1) найдите tga, если соsa=1/√10 и а(3π/2π)
2) найдите tga, если sins=-5/√26 и а(π; 3π/2)
3) найдите 3cosa, если sina=-2√2/3 и а(3π/2; 2π)
4) найдите 5sina, если cosa=2√6/5 и а(3π/2; 2π)
5) найдите sins, если cosa=0,6 и π 6) найдите cosx, если sinx=-0,8 и 180° если можно с фото
х1+х2=5 у1+у2=-8 D=9+4*4*7=121=11²
х1*х2=6 у1*у2=16 х1=(3+11)/14=1 х1=1
х1=3 у1=4 х2=(3-11)/14=8/14=4/7 х2=4/7
х2=2 у2=4
8х²+5х-3=0
D=25+4*3*8=121=11²
х1=(-5+11)/16=6/16=3/8 х1=3/8
х2=(-5-11)/16=-1 х2=-1
1. Область определения - множество всех чисел, кроме нуля.
2. Нули функции 5/х -4 = 0, х=0,8.
3. Промежутков получается три: (-∞;0) у<0; (0;0,8)у>0; (0,8;+∞) y<0.
4.Функция убывает на каждом промежутке области определения, поэтому экстремумов нет.
5. (-∞;0) убывает, (0;+∞) убывает.
6. График функции представляет гиперболу у=5/х, смещенную на 4 единицы вниз, поэтому функция принимает все значения, кроме -4; область значений (-∞;-4)∪(-4;+∞).
7. Наибольшего и наименьшего значений нет.
8. у(-х)= -5/х-5≠у(х) и у(-х)≠-у(х). Четной или нечетной функция не является.
у=х²+4х+5.
1. Область определения (-∞;+∞).
2. Нулей нет, т.к. дискриминант отрицательный.
3 Промежуток знакопостоянства один (-∞;+∞)у>0.
4. Функция имеет минимум в точке -b/(2a)=-2.
5. (-∞;-2] ---убывает, [-2;+∞) --- возрастает.
6.7. у(-2)= 4-8+5 = 1 - наименьшее значение функции, область значений [1;+∞).
8. функция не четная ни нечетная, т.к. у(-х) = х²-4х+5. Это не равно ни у(х) ни -у(х).