1.найти область определения функции: y=cos 2x + tgx
2.найти множество значений функции: y =12 cos 3x
3.определите четность или нечетность функции y=tgx + ctgx – sinx
4.найдите наименьший положительный период функции: y = cos ( 4x-π)
5.постройте график функции: y = cos (x- π/3)+1
Тогда CA - образующая конуса, OA - радиус основания конуса и CO - высота конуса.
Треугольник COA - прямоугольный, в котором известны угол CAO, равный 60°, и гипотенуза CA, равная 6/√π. При этом катет OA является радиусом основания конуса R.
Полная поверхность конуса складывается из площади основания и площади боковой поверхности конуса.
Площадь основания - это площадь круга с радиусом R, т.е. πR².
Площадь боковой поверхности прямого конуса определяется по формуле πRL, где R - радиус основания, а L - длина образующей.
Значит, площадь полной поверхности конуса S равна πR²+πRL = πR(R+L).
L=6/√π
R определим из прямоугольного треугольника COA: OA/CA=cos∠CAO ⇒ OA=CA*cos∠CAO.
∠CAO=60° ⇒ cos∠CAO=cos60°=1/2 ⇒ OA=R=CA*cos∠SAO=L/2=3/√π
S = πR(R+L) = π(6/√π)(3/√π+6/√π) = 6√π(9/√π) = 54
- log2_(2x+1) = - 2;
log2_(2x+1) = 2;
2x+ 1= 2^2;
2x = 3;
x= 1,5.
3)log2_(4 - 2x) + log2_3 = 1;
log2_((4-2x)*3 = 1;
log2_(12 - 6x) = 1;
12 - 6x = 2^1;
12 - 6x = 2;
- 6x = -10;
x = 10/6= 5/3.
4) log7_(x-1) = log7_2 + log7_3;
log7_(x-1) = log7_(2*3);
x - 1 = 6;
x = 7.
5)1 ≤ 7x - 3 < 49; +3
1 + 3 ≤ 7x < 49 + 3;
4 ≤ 7x < 52;
4/7 ≤ x < 52/7.
6) log2_(1 - 2x) < 0;
log2_(1 - 2x) < log2_1;
2 > 1; ⇒ 1 - 2x < 1;
- 2x < 1 - 1;
- 2x < 0; /-2 < 0;
x > 0
7) lg(0,5 x - 4) < 2;
lg(0,5x - 4) <lg100;
0,5x - 4 < 100;
0,5 x < 104; * 2>0;
x < 208
8) log0,2_(2x+3) ≥ - 3; 0,2 = 1/5 = 5^(-1);
- log5_(2x + 3) ≥ - 3; /-1 <0;
log5_(2x + 3) ≤ 3;
log5_(2x+3) ≤ log5_125;
5 > 1; ⇒ 2x + 3 ≤ 125;
2 x ≤ 122;
x ≤ 61.
В первом задании не понятно условие.