В 8 часов, утром, из Лённеберги выехал Эмиль на лошади со скоростью 16 км/ч, а позже навстречу ему из их родного хутора Катхульта выехал отец на телеге со скоростью 15 км/ч, чтоб встретить Эмиля и постараться избежать очередной его шалости. Расстояние между Лённебергой и Катхультом 42,75 км, а встретились отец и сын на расстоянии 18,75 км от Катхульта и вместе поехали домой. В какое время отец Эмиля выехал из Катхульта?
Формула движения: S=v*t
S - расстояние v - скорость t – время
1) Найти время в пути отца:
18,75 : 15 = 1,25 (часа) = 1 и 1/4 часа = 1 час 15 минут.
2) Найти путь, который проехал сын до места встречи:
42,75 - 18,75 = 24 (км).
3) Найти время, которое сын провёл в пути:
24 : 16 = 1,5 (часа) = 1 и 1/2 часа = 1 час 30 минут.
4) Сын выехал в 8 часов, в пути был 1 час 30 минут, найти время встречи:
8:00 + 1:30 = 9:30 (часов).
5) На момент встречи отец был в пути 1 час 15 минут, найти время, в которое отец выехал из дома:
9 x^2 - 25 x^4= 0; 9x^2 ( 1 - 25x^4 / 9) = 0; (3x)^2 * ( 1- 5x/2) (1+ 5x/2) = 0; x1 = 0; Четный корень, так как он повторяется x2 = - 2,5; x3 = 2,5. Теперь методом интервалов определим знаки производной y' + - четн - + - 2,5 02,5x y возр убыв убыв возр. max min Находим знаки производной на этих промежутках , подставляя числа из промежутков в в уравнение производной y'=9 x^2 - 25 x^4; значение х= 3 - это число из самой правой области (0т 2,5 до бескон-ти). Дальше чередуем, не забываем о том, что через точку х=0 проходим, не меняя знак. Таким образом , точка минимума - это точка х = 2,5. Именно в ней производная меняет знак с плюса на минус. У Вас получилось 2 точки минимума, потому что Вы наверняка не учли, что здесь 4 корня, 2 из которых одинаковые (х=0 и х =0). При переходе через корень четной степени( в данном случае второй степени) знак не меняется
В решении.
Объяснение:
В 8 часов, утром, из Лённеберги выехал Эмиль на лошади со скоростью 16 км/ч, а позже навстречу ему из их родного хутора Катхульта выехал отец на телеге со скоростью 15 км/ч, чтоб встретить Эмиля и постараться избежать очередной его шалости. Расстояние между Лённебергой и Катхультом 42,75 км, а встретились отец и сын на расстоянии 18,75 км от Катхульта и вместе поехали домой. В какое время отец Эмиля выехал из Катхульта?
Формула движения: S=v*t
S - расстояние v - скорость t – время
1) Найти время в пути отца:
18,75 : 15 = 1,25 (часа) = 1 и 1/4 часа = 1 час 15 минут.
2) Найти путь, который проехал сын до места встречи:
42,75 - 18,75 = 24 (км).
3) Найти время, которое сын провёл в пути:
24 : 16 = 1,5 (часа) = 1 и 1/2 часа = 1 час 30 минут.
4) Сын выехал в 8 часов, в пути был 1 час 30 минут, найти время встречи:
8:00 + 1:30 = 9:30 (часов).
5) На момент встречи отец был в пути 1 час 15 минут, найти время, в которое отец выехал из дома:
9:30 - 1:15 = 8:15 (часов).
Отец выехал из дома в 8 часов 15 минут.
y'(x) = - 25 x^4 + 9 x^2 = 9 x^2 - 25 x^4;
9 x^2 - 25 x^4= 0;
9x^2 ( 1 - 25x^4 / 9) = 0;
(3x)^2 * ( 1- 5x/2) (1+ 5x/2) = 0;
x1 = 0; Четный корень, так как он повторяется
x2 = - 2,5;
x3 = 2,5.
Теперь методом интервалов определим знаки производной
y' + - четн - +
- 2,5 02,5x
y возр убыв убыв возр.
max min
Находим знаки производной на этих промежутках , подставляя числа из промежутков в в уравнение производной y'=9 x^2 - 25 x^4;
значение х= 3 - это число из самой правой области (0т 2,5 до бескон-ти). Дальше чередуем, не забываем о том, что через точку х=0 проходим, не меняя знак.
Таким образом , точка минимума - это точка х = 2,5. Именно в ней производная меняет знак с плюса на минус.
У Вас получилось 2 точки минимума, потому что Вы наверняка не учли, что здесь 4 корня, 2 из которых одинаковые (х=0 и х =0). При переходе через корень четной степени( в данном случае второй степени) знак не меняется