1. Определить фигуру, заданную уравнением:
(7x-10y)^2 + (10x+8)^2 = 0
2. Используя графическую иллюстрацию, определить фигуру, заданную системой уравнений:
(x+2)^2 + (y+3)^2 = 49
9x + 3y = 7
3. На координатной плоскости изобразить фигуру
(x + 3)(y - 6)(x + y) = 0
4. На координатной плоскости изобразить множество точек, удовлетворяющих неравенству:
(x-2)^2 + (y-3)^2 > 36
5. На координатной плоскости изобразить множество точек, удовлетворяющих системе неравенств:
(x-7)^2 + (y-5)^2 < 25
9x - 6y < 1
5х - 2у = 0
3х + 2у - 16 = 0
Решим эту систему 3-мя
1. сложения
5х - 2у = 0
+ 3х + 2у - 16 = 0
8х - 16 = 0; 8х = 16; х = 2
подстановки
5х - 2у = 0; 5x = 2y; y = 2,5x
3х + 2у - 16 = 0; 2y = 16 - 3x; y = 8 - 1,5x , т.к. у=у, то
2,5x =8 - 1,5x ; 4x = 8; x=2
3. Графический
5х - 2у = 0 находим точки для этого уравнения
х 0 2
у 0 5
и проводим через точки (0;0) и (2;5) прямую.
Теперь строим 2-й график для уравнения
3х + 2у - 16 = 0
х 0 2
у 8 5
и снова проводим через точки (0;8) и (2;5) вторую прямую.
Эти прямые пересекутся в точке (2;5). Получаем х=2, у=5.
Итак, дано: квадрат любого числа есть число положительное. Запишем это математически (скобки для наглядности):
Отрицание первым раскрытие квантора. Существует число, квадрат которого неположителен. Математически:
Отрицание вторым я не знаю, как построить, важно, что приводит это к одному и тому же высказыванию в конце концов.
Ну, а истинность установить однозначно нельзя. Если рассматривать это высказывание на множестве натуральных чисел, то оно истинно. Квадрат любого натурального числа положителен, потому что произведение двух положительных чисел положительно.
А если, например, над целыми числами - то оно ложно. Контрпример: x = 0. Квадрат такого числа не является числом положительным.
Если же рассматривать это высказывание над комплексными числами, найдутся и другие контрпримеры, например,