1. Подчеркните выражение, которое не входит ни в одну из частей равенств, выражающих свойства степени с натуральным показателем. am+n, (am)n, am/n, am-n, anbn
2. Подчеркните два существенных элемента степени: квадрат, показатель, решение, основание, переменная.
3. Допишите равенства и подберите общее для них название:
aman = …
… = anbn
(am)n = …
В решении.
Объяснение:
Представьте в виде многочлена выражение:
(0,8a + 0,9b)(0,8a - 0,9b) = 0,64a² - 0,81b².
Представьте в виде многочлена выражение:
(8x⁴+9y)(8x⁴−9y) = 64х⁸ - 81у².
Разложите на множители:
0,01m⁶−2,56n⁶ = (0,1m³ - 1,6n³)(0,1m³ + 1,6n³).
Разложите на два множителя:
36x²−1,21y² = (6х - 1,1у)(6х + 1,1у).
Представьте в виде многочлена выражение:
(0,4a+3b)(0,4a−3b) = 0,16a² - 9b².
Выполните умножение многочленов:
(2a²+0,1)(2a²−0,1) = 4a⁴ - 0,01.
Разложите на два множителя:
49m²−289n² = (7m - 17n)(7m + 17n).
Разложите на множители:
a⁴−0,16b⁴ = (a² - 0,4b²)(a² + 0,4b²).
Выполните умножение многочленов:
(0,3x+6)(0,3x−6) = 0,09x² - 36.
Разложите на множители:
0,49m⁶−225n⁶ = (0,7m³ - 15n³)(0,7m³ + 15n³).
Разложите на два множителя:
0,09x²−1,96y² = (0,3x - 1,4y)(0,3x + 1,4y).
Представьте в виде многочлена выражение:
(7x⁴+0,8y³)(7x⁴−0,8y³) = 49x⁸ - 0,64y⁶.
Выполните возведение в квадрат:
(1,6+0,5a)² = 2,56 + 1,6a + 0,25a².
abcd=1000a+100b+10c+d
dcba=1000d+100c+10b+a
По условию:
abcd-dcba=909
1000a+100b+10c+d-1000d-100c-10b-a=909
999a-999d+90b-90c=909
999(a-d)+90(b-c)=909
111(a-d)-10(c-b)=101
Поскольку a>d, то единственный возможный вариант - это a-d=1, при (a-d)>1, например 2: 222-10(с-b)>101, а значит:
111-10(c-b)=101
10(c-b)=10
c-b=1 ⇒
a=d+1, из чего видно, что d≤8
c=b+1, из чего видно, что b≤8
Есть еще условие, что сумма цифр кратна 3.
a+b+c+d=2d+1+2b+1=2(d+b+1) ⇒ поскольку сумма цифр четная, то остается единственный вариант:
2(d+b)+2=6n максимально возможное 30d+b=14
Подбираем максимальное:
а=9
d=8
b=14-8=6
c=7
9678-8769=909
ответ 9678