1. Последовательность задана рекуррентной формулой: а1 =10, an+1=7аn а) Определите 2-ой и 3-ий член последовательности;
b) Запишите через n формулу n-го члена последовательности;
с) Айбек сказал,
3430 является членом данной
последовательности. Истинно ли утверждение Айбека? ответ
объясните.
1) Найдем первые члены последовательности
b(1)=1^2-4=-3
b(2)=2^2-4=0
b(3)=3^2-4=5
b(4)=4^2-4=12
b(5)=5^2-4=21
последовательность возроастающая, значит следующие члены будут большими за 21
значит нам подходят только -3, 0, 21
можно было иначе -3=n^2-4 откуда натуральное n равно 1
6=n^2-4 такого натурального n нет
0=n^2-4 откуда натуральное n равно 2
21=n^2-4 откуда натуральное n равно 5
второй вариант поиска более верный, но у нас небольшие числа можно искать и по первому)
2) знаменатель равен b2\b1 или b3\b2 и так далее ,то есть отношению следующего члена прогрессии к предыдущему
b1=3 b2=1 b3=1\3 ...
значит он равен 1\3
ответ г)1/3
3) ищем знаменатель 1\3 : 1\6 =2 q=b2\b1
значит х =1\3 *2=2\3 b3=b2*q
ответ: 2\3
1) если х=0, то из первого уравнения у=±1, а из второго у=0, поэтому х≠0, разделим обе части 2 уравнения на х², получим
2+5(у/х)-7(у/х)²=0, пусть у/х=к, тогда к²-(5/7)к-2/7=0; по Виету к=1; к=-2/7;
1) к=1, тогда у=х, подставим в 1 уравнение. получим у²-у²+3у²=3;⇒у=±1; х=±1, решения системы (1;1); (-1;-1).
2) у/х=-2/7; у=-2х/7; подставим в 1 уравнение. получим
х²-(-2/7)х²+3(-2х/7)²=3;⇒98х²+14х²+12х²=147; 147=75х²;25х²=49;
х=±√(49/25)=±7/5=±1.4
3) если х=7/5=1.4, то у=-2*7/(7*5)=-2/5=-0.4
и третье решение (1.4; -0.4)
4) если х=-7/5, то у =2*7/(7*5)=2/5=0.4 и четвертое решение (-1.4; 0.4)